High resolution electron microscopic observations of the superstructure of tantalum pentoxide

1968 ◽  
Vol 3 (1) ◽  
pp. 31-35 ◽  
Author(s):  
J. Spyridelis ◽  
P. Delavignette ◽  
S. Amelinckx
Author(s):  
Glen B. Haydon

High resolution electron microscopic study of negatively stained macromolecules and thin sections of tissue embedded in a variety of media are difficult to interpret because of the superimposed phase image granularity. Although all of the information concerning the biological structure of interest may be present in a defocused electron micrograph, the high contrast of large phase image granules produced by the substrate makes it impossible to distinguish the phase ‘points’ from discrete structures of the same dimensions. Theory predicts the findings; however, it does not allow an appreciation of the actual appearance of the image under various conditions. Therefore, though perhaps trivial, training of the cheapest computer produced by mass labor has been undertaken in order to learn to appreciate the factors which affect the appearance of the background in high resolution electron micrographs.


2008 ◽  
Vol 72 (1) ◽  
pp. 217-220 ◽  
Author(s):  
H. P. Vu ◽  
S. Shaw ◽  
L. G. Benning

AbstractThe kinetics and mechanisms of the transformation of 2-line ferrihydrite (FH) to hematite (HM), in the presence of Pb at elevated temperatures and high pH condition, were elucidated using synchrotron-based,in situenergy dispersive X-ray diffraction (EDXRD). The time-resolved diffraction data indicated that HM crystallization occurred via a two-stage process. Based on the EDXRD data, combined with high-resolution electron microscopic images, an aqueous-aided 2D growth mechanism is proposed for both HM crystallization stages.


Sign in / Sign up

Export Citation Format

Share Document