The effects of iontophoretically applied antagonists on auditory nerve and amino acid evoked excitation of anteroventral cochlear nucleus neurons

1980 ◽  
Vol 19 (6) ◽  
pp. 519-528 ◽  
Author(s):  
M.R. Martin
1992 ◽  
Vol 336 (1278) ◽  
pp. 403-406 ◽  

This study investigates a potential mechanism for the processing of acoustic information that is encoded in the spatiotemporal discharge patterns of auditory nerve (AN) fibres. Recent physiological evidence has demonstrated that some low-frequency cells in the anteroventral cochlear nucleus (AVCN) are sensitive to manipulations of the phase spectrum of complex sounds (Carney 1990 b ). These manipulations result in systematic changes in the spatiotemporal discharge patterns across groups of low-frequency an fibres having different characteristic frequencies (CFS). One interpretation of these results is that these neurons in the AVCN receive convergent inputs from AN fibres with different CFS, and that the cells perform a coincidence detection or cross-correlation upon their inputs. This report presents a model that was developed to test this interpretation.


1978 ◽  
Vol 41 (6) ◽  
pp. 1557-1559 ◽  
Author(s):  
J. F. Brugge ◽  
E. Javel ◽  
L. M. Kitzes

1. Responses to pure tones were recorded from single neurons in the anteroventral cochlear nucleus (AVCN) in kittens ranging in age from 4 to 45 days. Different response properties mature at different times after birth. 2. The shapes of response areas of AVCN neurons after the 1st postnatal week resemble those recorded in the AVCN and auditory nerve of the adult. During the 1st wk after birth the high-frequency portion of the response area is extended. Phase-locked responses to stimulus frequencies below about 600 Hz occur at this time. Phase vs. frequency measurements and shapes of response areas indicate that by the end of the 1st postnatal week the cochlear partition may be capable of supporting a traveling wave along most of its length. 3. Functional development proceeds through a second phase which lasts until the end of the 2nd or the beginning of the 3rd wk of life. During that time threshold, maximal discharge rate, and average first-spike latency achieve adult values. 4. Phase-locking to low-frequency tones, to the extent displayed by phase-sensitive neurons in the adult AVCN or auditory nerve, is achieved last, after the 3rd or 4th wk postpartum.


1991 ◽  
Vol 65 (3) ◽  
pp. 606-629 ◽  
Author(s):  
M. I. Banks ◽  
M. B. Sachs

1. We investigate the discharge patterns of chopper units in the anteroventral cochlear nucleus (AVCN) by developing an equivalent cylinder compartmental model of AVCN stellate cells, which are the sources of the chopper response pattern. The model consists of a passive dendritic tree connected to somatic and axonal compartments with voltage-sensitive channels. Synaptic inputs to the model are simulated auditory nerve fiber responses to best-frequency tones. 2. We adjust the anatomic and electrical parameters of the model to agree with available intracellular data from stellate cells in the AVCN of the mouse and the cat and compare the response of the model to injected current with responses recorded in vitro. The model shows approximately linear current-voltage characteristics for small hyperpolarizing currents. The model's input resistance and the time course of its response to hyperpolarizing current applied at the soma are comparable with those measured from stellate cells in vitro. In response to sustained depolarizing current, the model fires repetitively with nearly perfect regularity, a property also observed in vitro. 3. Auditory nerve inputs to the cell are modeled as deadtime-modified Poisson processes with a multiexponential adaptation in the Poisson rate. We are able to adjust the number, rate, and location of excitatory and inhibitory inputs to the model and succeed in simulating chopper response patterns seen in vivo. 4. Chopper units exhibit a variety of regularity and adaptation patterns in response to tone stimuli. Physiological data from brain slice experiments and experiments in vivo imply that this heterogeneity is primarily due to differences in input configurations. By systematically varying the number and position of excitatory and inhibitory inputs, we can simulate a range of chopper response patterns. 5. We quantify the regularity of the model's response using the coefficient of variation (CV) of the interspike interval. We find that the CV decreases, i.e., the regularity increases, as the number of converging inputs or their distance from the soma increases. The regularity of the output is more sensitive to the number of converging inputs than to their location on the dendritic tree. The statistics of the first spike latency (FSL) are also sensitive to the configuration of excitatory inputs. The mean and minimum FSL are more sensitive to the electrotonic distance of the inputs from the soma than to the number of inputs, whereas the standard deviation of the FSL is highly dependent on the number of converging inputs and is nearly independent of their location.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 6 (6) ◽  
pp. 1127-1140 ◽  
Author(s):  
Ying-Cheng Lai ◽  
Raimond L. Winslow ◽  
Murray B. Sachs

Chopper cells in the anteroventral cochlear nucleus of the cat maintain a robust rate-place representation of vowel spectra over a broad range of stimulus levels. This representation resembles that of low threshold, high spontaneous rate primary auditory nerve fibers at low stimulus levels, and that of high threshold, low spontaneous rate auditory-nerve fibers at high stimulus levels. This has led to the hypothesis that chopper cells in the anteroventral cochlear nucleus selectively process inputs from different spontaneous rate populations of primary auditory-nerve fibers at different stimulus levels. We present a computational model, making use of shunting inhibition, for how this level dependent processing may be performed within the chopper cell dendritic tree. We show that this model (1) implements level-dependent selective processing, (2) reproduces detailed features of real chopper cell post-stimulus-time histograms, and (3) reproduces nonmonotonic rate versus level functions in response to single tones measured.


Sign in / Sign up

Export Citation Format

Share Document