On the dynamic fracture toughness and crack tip strain behavior of nuclear pressure vessel steel: Application of electromagnetic force

1986 ◽  
Vol 97 (2) ◽  
pp. 195-209 ◽  
Author(s):  
G. Yagawa ◽  
S. Yoshimura
Author(s):  
Diego F. B. Sarzosa ◽  
Rafael Savioli ◽  
Claudio Ruggieri ◽  
Andrey Jivkov ◽  
Jack Beswick

This work presents recent improvements in the micromechanical failure criterion based on the Weibull stress (σw) concept for prediction of cleavage fracture in ferritic steels. The model is applied in SE(B) specimens extracted from an ASTM A533 pressure vessel steel having different levels of stress triaxiality at the crack tip. Nonlinear 3D finite element models with dimensions matching the tested specimens were built to provide the necessary crack tip stresses at the fracture process zone for calculation of the σw-J evolution from wich the variation of characteristic toughness values (J0) between different cracked geometries can be estimated. Application of this methodology for the material used at this study is able to predict J0 for SE(B) specimens with very shallow crack size ratio a/W = 0.05, short crack a/W = 0.2 and deep crack a/W = 0.4. The reported fracture toughness values for specimens having very shallow crack size ratio is an additional contribution of this study.


2019 ◽  
Vol 827 ◽  
pp. 294-299
Author(s):  
Philippe Spätig ◽  
V. Mazánová ◽  
S. Suman ◽  
Hans Peter Seifert

Three point bending and impact tests with sub-sized Charpy specimens were performed on the JRQ reference steel for reactor pressure vessels. Quasi-static and dynamic fracture toughness data were calculated and the fracture behavior in the ductile to brittle transition region was evaluated within the frame of the master curve method (ASTM E1921). Specimens with shallow and deep cracks were studied and the respective influence of crack length and loading rate on the reference transition temperature was determined. The force-time curves of specimens with shallow cracks presented significantly smaller oscillations with respect to the absolute force, making the fracture toughness evaluation more accurate.


Sign in / Sign up

Export Citation Format

Share Document