scholarly journals A Local Approach to Assess Effects of Specimen Geometry on Cleavage Fracture Toughness in Reactor Pressure Vessel Steels

Author(s):  
Diego F. B. Sarzosa ◽  
Rafael Savioli ◽  
Claudio Ruggieri ◽  
Andrey Jivkov ◽  
Jack Beswick

This work presents recent improvements in the micromechanical failure criterion based on the Weibull stress (σw) concept for prediction of cleavage fracture in ferritic steels. The model is applied in SE(B) specimens extracted from an ASTM A533 pressure vessel steel having different levels of stress triaxiality at the crack tip. Nonlinear 3D finite element models with dimensions matching the tested specimens were built to provide the necessary crack tip stresses at the fracture process zone for calculation of the σw-J evolution from wich the variation of characteristic toughness values (J0) between different cracked geometries can be estimated. Application of this methodology for the material used at this study is able to predict J0 for SE(B) specimens with very shallow crack size ratio a/W = 0.05, short crack a/W = 0.2 and deep crack a/W = 0.4. The reported fracture toughness values for specimens having very shallow crack size ratio is an additional contribution of this study.

Author(s):  
Claudio Ruggieri ◽  
Robert H. Dodds

This work describes a micromechanics methodology based upon a local failure criterion incorporating the strong effects of plastic strain on cleavage fracture coupled with statistics of microcracks. A central objective is to gain some understanding on the role of plastic strain on cleavage fracture by means of a probabilistic fracture parameter and how it contributes to the cleavage failure probability. A parameter analysis is conducted to assess the general effects of plastic strain on fracture toughness correlations for conventional SE(B) specimens with varying crack size over specimen width ratios. Another objetive is to evaluate the effectiveness of the modified Weibull stress (σ̃w) model to correct effects of constraint loss in PCVN specimens which serve to determine the indexing temperature, T0, based on the Master Curve methodology. Fracture toughness testing conducted on an A285 Grade C pressure vessel steel provides the cleavage fracture resistance (Jc) data needed to estimate T0. Very detailed non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens provide the evolution of near-tip stress field with increased macroscopic load (in terms of the J-integral) to define the relationship between σ̃w and J. For the tested material, the Weibull stress methodology yields estimates for the reference temperature, T0, from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of much larger crack configurations.


Author(s):  
Rafael G. Savioli ◽  
Claudio Ruggieri

This work describes an application of a micromechanics model for cleavage fracture to determine the reference temperature for pressure vessel steels from precracked Charpy (PCVN) specimens. A central objective is evaluate the effectiveness of the Weibull stress (σw) model to correct effects of constraint loss in PCVN specimens which serve to determine the indexing temperature T0 based on the Master Curve methodology. Fracture toughness testing conducted on an A285 Grade C pressure vessel steel provides the cleavage fracture resistance data needed to estimate T0. Very detailed non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens provide the evolution of near-tip stress field with increased macroscopic load (in terms of the J-integral) to define the relationship between σw and J from which the variation of fracture toughness across different crack configurations is predicted. For the tested material, the Weibull stress methodology yields estimates for the reference temperature, T0, from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of much larger crack configurations.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Rafael G. Savioli ◽  
Claudio Ruggieri

This work addresses an experimental investigation on the cleavage fracture behavior of an ASTM A285 Grade C pressure vessel steel. One purpose of this study is to enlarge previously reported work on mechanical and fracture properties for this class of steel to provide a more definite database for use in structural and defect analyses of pressurized components, including pressure vessels and storage tanks. Another purpose is to determine the reference temperature, T0, derived from the Master curve methodology which defines the dependence of fracture toughness with temperature for the tested material. Fracture toughness testing conducted on single edge bend SE(B) specimens in three-point loading extracted from an A285 Grade C pressure vessel steel plate provides the cleavage fracture resistance data in terms of the J-integral and crack tip opening displacement (CTOD) at cleavage instability, Jc and δc. Additional tensile and conventional Charpy tests produce further experimental data which serve to characterize the mechanical behavior of the tested pressure vessel steel. The experimental results reveal a strong effect of specimen geometry on Jc and δc-values associated with large scatter in the measured values of cleavage fracture toughness. Overall, the present investigation, when taken together with previous studies, provides a fairly extensive body of experimental results which describe in detail the fracture behavior of an ASTM A285 Grade C pressure vessel steel.


2005 ◽  
Vol 128 (3) ◽  
pp. 305-313 ◽  
Author(s):  
H. J. Rathbun ◽  
G. R. Odette ◽  
T. Yamamoto ◽  
M. Y. He ◽  
G. E. Lucas

A systematic investigation of the effects of specimen size on the cleavage fracture toughness of a typical pressure vessel steel is reported. Size dependence arises both from: (i) statistical effects, related to the volume of highly stressed material near the crack tip, that scales with the crack front length (B) and (ii) constraint loss, primarily associated with the scale of plastic deformation compared to the un-cracked ligament dimension (b). Previously, it has been difficult to quantify the individual contributions of statistical versus constraint loss size effects. Thus, we developed a single variable database for a plate section from the Shoreham pressure vessel using a full matrix of three point bend specimens, with B from 8 to 254 mm and b from 3.2 to 25.4 mm, that were tested at a common set of conditions. The University of California Santa Barbara (UCSB) b-B database was analyzed using three-dimensional finite element calculation of the crack tip fields combined with a cleavage model calibrated to the local fracture properties of the Shoreham steel. This paper focuses on the possible significance of these results to the Master Curve standard as formulated in ASTM E 1921. The statistical scaling procedure to treat variations in B used in E 1921 was found to be reasonably consistent with the UCSB b-B database. However, constraint loss for three point bend specimens begins at a deformation level that is much lower than the censoring limit specified in E 1921. Unrecognized constraint loss leads to a nonconservative, negative bias in the evaluation of To, estimated to be typically on the order of −10°C for pre-cracked Charpy specimens.


Sign in / Sign up

Export Citation Format

Share Document