Human pulpal response to hydroxyapatite and a calcium hydroxide material as direct capping agents

1993 ◽  
Vol 76 (4) ◽  
pp. 485-492 ◽  
Author(s):  
R. Kemal Su¨bay ◽  
Selmin Aşci
2016 ◽  
Vol 9 (3) ◽  
pp. 140 ◽  
Author(s):  
Rafeza Sultana ◽  
Mozammal Hossain ◽  
Md. Shamsul Alam

<p>The maintenance of pulp vitality and conduction of reparative dentin can be possible by indirect pulp capping with mineral trioxide aggregate (MTA) and calcium hydroxide as pulp capping agents. The objective of the study is to assess the clinical and radiological outcomes of MTA and calcium hydroxide as indirect pulp capping agents in deep carious lesions of permanent teeth. The present study included 50 permanent teeth having deep carious lesions with reversible pulp status were selected and then randomly divided into two groups of 25 teeth in a group. Standard indirect pulp capping procedures were followed. Patients were recalled at 3, 6 and 12 months interval to assess postoperative pain, the vitality of the pulp and formation of reparative dentin. In all observation periods, MTA showed more capable of reducing pain and maintain pulp vitality which was statistically significant than that of calcium hydroxide. At 12 months observation period, 24 teeth (96%) of MTA and 19 teeth (76%) of calcium hydroxide showed reparative dentin formation. It can be concluded that MTA is more effective than that of calcium hydroxide.</p><p> </p>


2008 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Maria de Lourdes R. Accorinte ◽  
Roberto Holland ◽  
Alessandra Reis ◽  
Marcelo C. Bortoluzzi ◽  
Sueli S. Murata ◽  
...  

2011 ◽  
Vol 14 (4) ◽  
pp. 351 ◽  
Author(s):  
Masoud Parirokh ◽  
Ali Eskandarizadeh ◽  
Mahdieh Shahpasandzadeh ◽  
MohammadHossein Shahpasandzadeh ◽  
Molok Torabi

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2670 ◽  
Author(s):  
Mariano S. Pedano ◽  
Xin Li ◽  
Kumiko Yoshihara ◽  
Kirsten Van Landuyt ◽  
Bart Van Meerbeek

Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in) directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.


Author(s):  
Alexandre M. Fernandes ◽  
Gerluza A.B. Silva ◽  
Nelson Lopes ◽  
Marcelo H. Napimoga ◽  
Bruno B. Benatti ◽  
...  

2005 ◽  
Vol 13 (2) ◽  
pp. 126-130 ◽  
Author(s):  
Alexandra Mussolino de Queiroz ◽  
Sada Assed ◽  
Mario Roberto Leonardo ◽  
Paulo Nelson-Filho ◽  
Léa Assed Bezerra da Silva

This study evaluated the biocompatibility of mineral trioxide aggregate (MTA) after direct capping of exposed pulp tissue in dog's teeth. Class I cavities were prepared in 26 teeth from 3 adult dogs. MTA was applied over the exposed pulp in 13 teeth and paste of calcium hydroxide plus distilled water (control) was applied in the remaining 13 teeth. After 90 days, the animals were killed; the maxilla and mandible were dissected and sectioned to obtain individual roots. The samples were processed histologically. The pulp and periapical response observed with the use of MTA was similar to that of calcium hydroxide paste. In all specimens, there was a dentin bridge obliterating the exposure, an intact odontoblastic layer, no inflammatory cells, normal connective pulp tissue, normal apical and periapical regions and no bone tissue changes. Similar to calcium hydroxide, MTA presented excellent response when used for direct pulp capping.


Sign in / Sign up

Export Citation Format

Share Document