The roles of the north-south component of the interplanetary magnetic field on large-scale auroral dynamics observed by the DMSP satellite

1975 ◽  
Vol 23 (10) ◽  
pp. 1349-1354 ◽  
Author(s):  
S.-I. Akasofu
1971 ◽  
Vol 43 ◽  
pp. 588-594 ◽  
Author(s):  
Martin D. Altschuler ◽  
Gordon Newkirk ◽  
Dorothy E. Trotter ◽  
Robert Howard

The six years of data from the Mt. Wilson Magnetic Atlas were analyzed in terms of surface harmonics. Between 1959 and 1962 the dominant harmonic corresponded to a dipole lying in the plane of the equator (2 sectors). There was also a significant zonal harmonic in which both solar poles had the same magnetic polarity, opposite to that at the equator. From the end of 1962 through 1964, the harmonic corresponding to 4 sectors was dominant. In 1965 and 1966, the harmonic of the north-south dipole became significant.


1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.


2001 ◽  
Vol 19 (5) ◽  
pp. 487-493 ◽  
Author(s):  
P. E. Sandholt ◽  
C. J. Farrugia ◽  
S. W. H. Cowley ◽  
M. Lester ◽  
J.-C. Cerisier

Abstract. We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF), to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field) and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection)


1971 ◽  
Vol 43 ◽  
pp. 744-753 ◽  
Author(s):  
John M. Wilcox

The solar sector structure consists of a boundary in the north-south direction such that on one side of the boundary the large-scale weak photospheric magnetic field is predominantly directed out of the Sun, and on the other side of the boundary this field is directed into the Sun. The region westward of a solar sector boundary tends to be unusually quiet and the region eastward of a solar sector boundary tends to be unusually active. This tendency is discussed in terms of flares, coronal enhancements, plage structure and geomagnetic response.


1973 ◽  
Vol 78 (19) ◽  
pp. 3761-3772 ◽  
Author(s):  
Margaret G. Kivelson ◽  
Christopher T. Russell ◽  
Marcia Neugebauer ◽  
Frederick L. Scarf ◽  
Robert W. Fredricks

Sign in / Sign up

Export Citation Format

Share Document