About the Relation Between the Limb Effect of the Redshift on the Sun and the Large-Scale Distribution of Solar activity

1976 ◽  
Vol 71 ◽  
pp. 113-118
Author(s):  
P. Ambrož

The measurement of the magnitude of the limb effect was homogenized in time and a recurrent period of maxima of 27.8 days was found. A relation was found between the maximum values of the limb effect of the redshift, the boundaries of polarities of the interplanetary magnetic field, the characteristic large-scale distribution of the background magnetic fields and the complex of solar activity.

1971 ◽  
Vol 43 ◽  
pp. 609-615 ◽  
Author(s):  
G. Daigne ◽  
M. F. Lantos-Jarry ◽  
M. Pick

It is possible to deduce information concerning large scale coronal magnetic field patterns from the knowledge of the location of radioburst sources.As the method concerns active centers responsible for corpuscular emission, the knowledge of these structures may have important implications in the understanding of corpuscular propagation in the corona and in the interplanetary medium.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 360-364
Author(s):  
Rim Fares

AbstractIn Sun-like stars, magnetic fields are generated in the outer convective layers. They shape the stellar environment, from the photosphere to planetary orbits. Studying the large-scale magnetic field of those stars enlightens our understanding of the field properties and gives us observational constraints for field generation dynamo models. It also sheds light on how “normal” the Sun is among Sun-like stars. In this contribution, I will review the field properties of Sun-like stars, focusing on solar twins and planet hosting stars. I will discuss the observed large-scale magnetic cycles, compare them to stellar activity cycles, and link that to what we know about the Sun. I will also discuss the effect of large-scale stellar fields on exoplanets, exoplanetary emissions (e.g. radio), and habitability.


Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


1968 ◽  
Vol 35 ◽  
pp. 390-394
Author(s):  
John M. Wilcox ◽  
Norman F. Ness ◽  
Kenneth H. Schatten

The relation of solar active regions to the large-scale sector structure of the interplanetary field is discussed. In the winter of 1963–64 (observed by the satellite IMP-1) the plage density was greatest in the leading portion of the sectors and lesser in the trailing portion of the sectors. The boundaries of the sectors (places at which the direction of the interplanetary magnetic field changed from toward the Sun to away from the Sun, or vice versa) were remarkably free of plages. The very fact that since the first observations in 1962 the average interplanetary field has almost always had the property of being either toward the Sun or away from the Sun (along the Archimedean spiral angle) continuously for several days must be considered in the discussion of large-scale evolution of active regions. Using the observed interplanetary magnetic field at 1 AU and a set of reasonable assumptions the magnetic configuration in the ecliptic from 0·4 AU to 1·2 AU has been reconstructed. In at least one case a pattern emerges which appears to be related to the evolution of an active region from an early stage in which the magnetic lines closely couple the preceding and following halves of the region to a later stage in which the two halves of the region are more widely separated.


2000 ◽  
Vol 179 ◽  
pp. 343-347
Author(s):  
H. M. Antia ◽  
S. M. Chitre ◽  
M. J. Thompson

AbstractThe observed splittings of solar oscillation frequencies can be utilized to study possible large-scale magnetic fields present in the solar interior. Using the GONG data on frequency splittings an attempt is made to infer the strength of magnetic fields inside the Sun.


2000 ◽  
Vol 179 ◽  
pp. 209-212
Author(s):  
M. L. Demidov

AbstractA comparison is made of observational data on the mean magnetic field of the Sun from several observatories (a selection of published information and new measurements). Results of correlation and regression analyses of observations of background magnetic fields at the STOP telescope of the Sayan solar observatory in different spectral lines are also presented. Results obtained furnish an opportunity to obtain more unbiased information about large-scale magnetic fields of the Sun and, in particular, about manifestations of strong (kilogauss) magnetic fields in them.


1968 ◽  
Vol 35 ◽  
pp. 403-403
Author(s):  
C. Y. Fan ◽  
M. Pick ◽  
R. Ryle ◽  
J. A. Simpson ◽  
D. R. Smith

The Pioneer-6 and Pioneer-7 space probes carried charged-particle telescopes which measure, for the first time, both the direction of arrival and differential energy spectra of protons and alpha particles. The intensity changes, directional distributions and energy spectra of proton fluxes associated with solar activity are investigated. The data were obtained in the beginning of the new solar cycle (no. 20), when it is possible to unambiguously associate proton-flux increases with specific solar active regions. The origin, possibly long-term storage, and propagation of these proton fluxes are investigated. It was observed that enhanced 0·6–13 MeV proton fluxes associated with specific active regions were present over heliographic longitude ranges as great as ~ 180°. These enhanced fluxes exhibit definite onsets and cut-offs which appear to be associated with the magnetic-sector boundaries observed by Ness on Pioneer-6. Discrete flare-produced intensity increases extending in energy to more than 50 MeV are observed, superposed on the enhanced flux. These increases displayed short transit times and short rise times. Both the enhanced and flare-produced fluxes propagate along the spiral interplanetary magnetic field from the Western hemisphere of the Sun. From these observations we are led to a model in which the magnetic fields from the active region are spread out over a longitude range of 100–180° in the solar corona. The existence of strong unidirectional anisotropies in the initial phases of flare-proton events implies that little scattering occurs between the Sun and spacecraft. However, the gradual approach to an isotropic flux at late times indicates that the decay phase is controlled by the interplanetary magnetic field.


1990 ◽  
Vol 138 ◽  
pp. 281-295
Author(s):  
V. I. Makarov ◽  
K. R. Sivaraman

The main features concerning the evolution of the large scale photospheric magnetic fields derived from synoptic maps as well as from H-alpha synoptic charts are reviewed. The significance of a variety of observations that indicate the presence of a high latitude component as a counterpart to the sunspot phenomenon at lower latitudes is reviewed. It is argued that these two components describe the global magnetic field on the sun. It is demonstrated that this scenario is able to link many phenomena observed on the sun (coronal emission, ephemeral active regions, geomagnetic activity, torsional oscillations, polar faculae and global modes in the magnetic field pattern) with the global magnetic activity.


2010 ◽  
Vol 6 (S273) ◽  
pp. 56-60 ◽  
Author(s):  
Mikhail Demidov

AbstractThe best way to test the stellar magnetic field mapping codes is to apply them, with some changes, to the Sun, where high-precision disk-integrated and disk-resolved observations are available for a long time. Data sets of the full-disk magnetograms and the solar mean magnetic fields (SMMF) measurements are provided, for example, by the J.M.Wilcox Solar observatory (WSO) and by the Sayan Solar observatory (SSO). In the second case the measurements in the Stokes-meter mode simultaneously in many spectral lines are available. This study is devoted to analysis of the SSO quasi-simultaneous full-disk magnetograms and SMMF measurements. Changes of the SMMF signal with rotation of the surface large-scale magnetic fields are demonstrated. Besides, by deleting of selected pixels with active regions (AR) from the maps their contribution to the integrated SMMF signal is evaluated. It is shown that in some cases the role of AR can be rather significant.


1976 ◽  
Vol 71 ◽  
pp. 135-135
Author(s):  
Leif Svalgaard ◽  
John M. Wilcox

The large-scale structure of the solar magnetic field during the past five sunspot cycles (representing by implication a much longer interval of time) has been investigated using the polarity (toward or away from the Sun) of the interplanetary magnetic field as inferred from polar geomagnetic observations. The polarity of the interplanetary magnetic field has previously been shown to be closely related to the polarity (into or out of the Sun) of the large-scale solar magnetic field. It appears that a solar structure with four sectors per rotation persisted through the past five sunspot cycles, with a synodic rotation period near 27.0 days, and a small relative westward drift during the first half of each sunspot cycle and a relative eastward drift during the second half of each cycle. Superposed on this four-sector structure there is another structure with inward field polarity, a width in solar longitude of about 100° and a synodic rotation period of about 28 to 29 days. This 28.5 day structure is usually most prominent during a few years near sunspot maximum. Some preliminary comparisons of these observed solar structures with theoretical considerations are given.


Sign in / Sign up

Export Citation Format

Share Document