Calculation of electronic density of states using a self-consistent cluster-Bethe-lattice method

1978 ◽  
Vol 26 (5) ◽  
pp. 295-298 ◽  
Author(s):  
R. Ballart ◽  
R.A. Young
1991 ◽  
Vol 219 ◽  
Author(s):  
B. N. Davidson ◽  
G. Lucovsky ◽  
J. Bernholc

ABSTRACTWe have systematically investigated the formation of electronic states in the region of the conduction and valence band edges of a Si as functions of variations in the bond angle distributions. Local Density of States (LDOS) for Si atoms in disordered environments have been calculated using the cluster Bethe lattice method with a tight-binding Hamiltonian containing both first and second nearest neighbor interaction terms. LDOS for atoms with bond angle dis ortions in the nearest neighbor and second neighbor shells are compared and contrasted, both showing an influence on the LDOS near the gap. We also consider the role of the second neighbor term in the Hamiltonian by comparing the DOS for a distoned infinite Bethe lattice using Hamiltonians with and without the second neighbor interactions. It is found that in this case the second neighbor interaction terms cause greater conduction band tailing than using the nearest neighbor interaction terms alone.


Sign in / Sign up

Export Citation Format

Share Document