environment effects
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 138)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Vol 951 (1) ◽  
pp. 012025
Author(s):  
N Hishammuddin ◽  
K A Radzun ◽  
M H Syafiq ◽  
S A Rahman ◽  
S A Bahari ◽  
...  

Abstract Bacterial cellulose (BC) white leathery pellicle produced from fermentation process of Acetobacter xylinum has many advantages such as high-water holding capacity, high porosity and high purity compared to plant cellulose. However, one of the BC application problems in industry is its low bio-cellulose productivity. The significant decrease of BC production can be effected by the reduction of pH culture due to production of by-product, gluconic acid during the static fermentation process. Therefore, the production of BC pellicle would be improved efficiently by controlling the pH of BC static cultivation. Bio-cellulose dry weight was at the greatest in acetates of 5.66 g/L while the dry weight derived from BC is 2.72 and 2.56 g/L in Control and Hestrin and Schramm (HS). The acetate buffered medium can be completed in a static fermentation method which can improve BC film production effectively.


2022 ◽  
Author(s):  
Hui Wang ◽  
Wenpeng Shi ◽  
Wene Wang ◽  
Xiaotao Hu ◽  
Gang Ling ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Min Huang ◽  
Dandan Liu ◽  
Liyun Ma ◽  
Jingyang Wang ◽  
Yuming Wang ◽  
...  

With the rapid development of science and technology, UAVs (Unmanned Aerial Vehicles) have become a new type of weapon in the informatization battlefield by their advantages of low loss and zero casualty rate. In recent years, UAV navigation electromagnetic decoy and electromagnetic interference crashes have activated widespread international attention. The UAV LiDAR detection system is susceptible to electromagnetic interference in a complex electromagnetic environment, which results in inaccurate detection and causes the mission to fail. Therefore, it is very necessary to predict the effects of the electromagnetic environment. Traditional electromagnetic environment effect prediction methods mostly use a single model of mathematical model and machine learning, but the traditional prediction method has poor processing nonlinear ability and weak generalization ability. Therefore, this paper uses the Stacking fusion model algorithm in machine learning to study the electromagnetic environment effect prediction. This paper proposes a Stacking fusion model based on machine learning to predict electromagnetic environment effects. The method consists of Extreme Gradient Boosting algorithm (XGB), Gradient Boosting Decision Tree algorithm (GBDT), K Nearest Neighbor algorithm (KNN), and Decision Tree algorithm (DT). Experimental results show that, comprising with the other seven machine learning algorithms, the Stacking fusion model has a better classification prediction accuracy of 0.9762, a lower Hamming code distance of 0.0336, and a higher Kappa coefficient of 0.955. The fusion model proposed in this paper has a better predictive effect on electromagnetic environment effects and is of great significance for improving the accuracy and safety of UAV LiDAR detection systems under the complex electromagnetic environment on the battlefield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marko Ivić ◽  
Sonja Grljušić ◽  
Ivana Plavšin ◽  
Krešimir Dvojković ◽  
Ana Lovrić ◽  
...  

Wheat cultivars differ in their response to nitrogen (N) fertilizer, both in terms of its uptake and utilization. Characterizing this variation is an important step in improving the N use efficiency (NUE) of future cultivars while maximizing production (yield) potential. In this study, we compared the agronomic performance of 48 diverse wheat cultivars released between 1936 and 2016 at low and high N input levels in field conditions to assess the relationship between NUE and its components. Agronomic trait values were significantly lower in the low N treatment, and the cultivars tested showed a significant variation for all traits (apart from the N remobilization efficiency), indicating that response is genotype-dependent, although significant genotype × environment effects were also observed. Overall, we show a varietal improvement in NUE over time of 0.33 and 0.30% year–1 at low and high N, respectively, and propose that this is driven predominantly by varietal selection for increased yield. More complete understanding of the components of these improvements will inform future targeted breeding and selection strategies to support a reduction in fertilizer use while maintaining productivity.


Sign in / Sign up

Export Citation Format

Share Document