Effect of the Local Disorder in a-Si on the Electronic Density of States at the Band Edges.

1991 ◽  
Vol 219 ◽  
Author(s):  
B. N. Davidson ◽  
G. Lucovsky ◽  
J. Bernholc

ABSTRACTWe have systematically investigated the formation of electronic states in the region of the conduction and valence band edges of a Si as functions of variations in the bond angle distributions. Local Density of States (LDOS) for Si atoms in disordered environments have been calculated using the cluster Bethe lattice method with a tight-binding Hamiltonian containing both first and second nearest neighbor interaction terms. LDOS for atoms with bond angle dis ortions in the nearest neighbor and second neighbor shells are compared and contrasted, both showing an influence on the LDOS near the gap. We also consider the role of the second neighbor term in the Hamiltonian by comparing the DOS for a distoned infinite Bethe lattice using Hamiltonians with and without the second neighbor interactions. It is found that in this case the second neighbor interaction terms cause greater conduction band tailing than using the nearest neighbor interaction terms alone.

1992 ◽  
Vol 258 ◽  
Author(s):  
B. N. Davidson ◽  
G. Lucovsky ◽  
J. Bernholc

ABSTRACTWe have examined the distribution of the neutral dangling bond defect states, T30, as a function of the local disorder. T30 defects in a-Si play an important role in many of the current models of the metastable photoconductivity. To understand the relationship between the T30 defect and its bonding environment, the Local Density of States (LDOS) for under-coordinated Si atoms in disordered environments are calculated using the cluster-Bethe lattice method, CBLM. Our Hamiltonian employs the tight-binding parameters of an sp3 orbital basis containing both 1st and 2nd nearest-neighbor interaction terms fit to c-Si band structure. Averaged LDOS of atoms with various bond angle distortions are calculated in order to demonstrate the relationship between the standard deviation in bond angle and the width of the defect states. The CBLM is also used to determine the extent of the valence band tails as a function of the standard deviation in bond angle. In addition, the LDOS of clusters with 2 dangling bonds are examined to determine the degree that their energy levels split due to their interaction with each other.


1992 ◽  
Vol 258 ◽  
Author(s):  
S.M. Cho ◽  
B.N. Davidson ◽  
G. Lucovsky

ABSTRACTWe have investigated the difference in the electronic energies of neutral Si and Ge dangling bond states in undoped a-Si1-xGex alloys as a function of the alloy composition, x, and local bond-angle distortions. The local density of states, LDOS, in a-Si1-xGex alloys has been calculated using nearest-neighbor interactions, and employing the Cluster Bethe Lattice method. We conclude that for ideal, tetrahedrally bonded amorphous semiconductors alloys, the Ge dangling bond energy is lower than that of Si dangling bonds by ∼ 0.13 eV, independent of the specific nearest neighbors to the dangling bond (3 Si-atoms, 2 Si-atoms and 1 Ge-atom, etc.), but that the spread in dangling bond energies associated bond-angle variations of the order of 6–8 degrees can be larger than this energy difference (∼0.3 eV or greater). This means that structural disorder, rather than chemical disorder causes Si and Ge-atom dangling bond states to overlap in their energy distributions.


2005 ◽  
Vol 19 (25) ◽  
pp. 1285-1294 ◽  
Author(s):  
JOSÉ A. GASCÓN ◽  
HORACIO M. PASTAWSKI

In metallic nanoparticles, shifts in the ionization energy of surface atoms with respect to bulk atoms can lead to surface bands. Within a simple Tight Binding model we find that the projection of the electronic density of states on these sites presents two overlapping structures. One of them is characterized by the level spacing coming from bulk states and the other arises from the surface states. In very small particles, this effect contributes to an over-broadening of the NMR absorption spectra, determined by the Knight shift distribution of magnetic nuclei. We compare our calculated Knight shifts with experiments on aluminum nanoparticles, and show that the deviation of the scaling law as a function of temperature and particle size can be explained in terms of surface states.


2012 ◽  
Vol 11 ◽  
pp. 151-156 ◽  
Author(s):  
YUJI SHIMOMURA ◽  
YOSITAKE TAKANE ◽  
KATSUNORI WAKABAYASHI

We study that stability of edge localized states in semi-infinite graphene with a corner edge of the angles 60°, 90°, 120° and 150°. We adopt a nearest-neighbor tight-binding model to calculate the local density of states (LDOS) near each corner edge using Haydock's recursion method. The results of the LDOS indicate that the edge localized states stably exist near the 60°, 90°, and 150° corner, but locally disappear near the 120° corner. By constructing wave functions for a graphene ribbon with three 120° corners, we show that the local disappearance of the LDOS is caused by destructive interference of edge states and evanescent waves.


Sign in / Sign up

Export Citation Format

Share Document