In situ observations of the initial stage of electrodeposition of Cu on Au(100) from an aqueous sulfuric acid solution using atomic force microscopy

1995 ◽  
Vol 327 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Norihito Ikemiya ◽  
Shinji Miyaoka ◽  
Shigeta Hara
Author(s):  
Adriana Samide ◽  
Gabriela Eugenia Iacobescu ◽  
Bogdan Tutunaru ◽  
Roxana Grecu ◽  
Cristian Tigae ◽  
...  

Our study aims to implement a strategy to reduce the carbon steel corrosion rate in sulfuric acid solution, using an expired drug with adsorption affinity on the metal surface. To investigate the corrosion protection efficiency of an environmental friendly inhibitor, namely neomycin sulfate (NMS), the electrochemical measurements were applied on carbon steel immersed in 1.0 M H2SO4 solution with and without NMS. The protective layer formed on the steel surface was studied by atomic force microscopy (AFM). The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) showed that the presence of the neomycin sulfate in acid solution leads to the decrease in corrosion current density (icorr) and the increase of polarization resistance (Rp). The mixed mechanism between physical and chemical adsorption of NMS molecules on the steel surface was proposed according to the Langmuir adsorption isotherm. The Atomic Force Microscopy (AFM) indicated that the NMS molecules contributed to a protective layer formation by their adsorption on the steel surface. The AFM parameters such as: root-mean-square roughness (Rq); average roughness (Ra) and maximum peak to valley height (Rp-v) revealed that in the presence of NMS a smoother surface of carbon steel was obtained, compared to the steel surface corroded in sulfuric acid blank solution.


Author(s):  
Adriana Samide ◽  
Gabriela Eugenia Iacobescu ◽  
Bogdan Tutunaru ◽  
Roxana Grecu ◽  
Cristian Tigae ◽  
...  

Our study aims to implement a strategy to reduce the carbon steel corrosion rate in sulfuric acid solution, using an expired drug with adsorption affinity on the metal surface. To investigate the corrosion protection efficiency of an environmental friendly inhibitor, namely neomycin sulfate (NMS), the electrochemical measurements were applied on carbon steel immersed in 1.0 M H2SO4 solution with and without NMS. The protective layer formed on the steel surface was studied by atomic force microscopy (AFM). The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) showed that the presence of the neomycin sulfate in acid solution leads to the decrease in corrosion current density (icorr) and the increase of polarization resistance (Rp). The mixed mechanism between physical and chemical adsorption of NMS molecules on the steel surface was proposed according to the Langmuir adsorption isotherm. The Atomic Force Microscopy (AFM) indicated that the NMS molecules contributed to a protective layer formation by their adsorption on the steel surface. The AFM parameters such as: root-mean-square roughness (Rq); average roughness (Ra) and maximum peak to valley height (Rp-v) revealed that in the presence of NMS a smoother surface of carbon steel was obtained, compared to the steel surface corroded in sulfuric acid blank solution.


1992 ◽  
Vol 139 (10) ◽  
pp. 2829-2832 ◽  
Author(s):  
B. J. Cruickshank ◽  
Andrew A. Gewirth ◽  
Rebecca Mohr Rynders ◽  
Richard C. Alkire

1993 ◽  
Vol 47 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Joel C. Rubim ◽  
Jae-Ho Kim ◽  
Eric Henderson ◽  
Therese M. Cotton

Three different methods were used to roughen brass (Cu/Zn = 67/33) electrodes in 0.5 M H2SO4 containing 1.0 mM benzotriazole (BTAH): (1) polarization at +0.05 V vs. saturated calomel for 5 min; (2) immersion in the above solution for six hours; and (3) oxidation-reduction cycling in the presence of chloride ion. The surfaces prepared by the first two methods exhibited surface-enhanced Raman scattering (SERS) spectra of the polymeric complex [Cu(I)BTA] n. The SERS spectrum obtained from electrodes prepared by the third method is very similar to that of [CU(I)C1BTAH]4. Examination of the electrodes by atomic force microscopy (AFM) showed that a large number of grain boundary sites are formed by the roughening processes. This effect is attributed to the loss of zinc, which occurs during corrosion of the mirror-like, polished brass electrode surface in the sulfuric acid solution.


Sign in / Sign up

Export Citation Format

Share Document