acid solution
Recently Published Documents





Christian Geindreau ◽  
Fabrice Emeriault ◽  
Abdelali Dadda ◽  
Olatounde Yaba ◽  
Lorenzo Spadini ◽  

Nargiza Bekbutaeva ◽  

results of studies of the forms of finding and methods of extracting molybdenum from acidic solutions with a high concentration of sulfuric acid are presented. Ion-exchange resins of various modifications were tested to determine the most effective for molybdenum during its sorption from a sulfuric acid solution.

Hind Agourrame ◽  
Amine Belafhaili ◽  
Nisrine El Fami ◽  
Nacer Khachani ◽  
Mohamed Alami Talbi ◽  

Layered Double Hydroxide (LDH) is ionic clay that is characterized by the union of metal cations and OH- hydroxides. LDH composites exhibit considerably high releasing and recharging capacity and have applications as bioactive cements. They can be prepared by direct co-precipitation of metal salts at controlled pH. The preparation is carried out from an acid solution of Zn (NO3)2.6H2O, Al (NO3)3.9H2O and a basic solution of Na2CO3 and NaOH, with a Zn/Al ratio = 3, the pH is stabilized between 9 and 9.5 at a constant temperature of 45°C. The objective of this study is to incorporate Zinc and Aluminum elements at different percentages in dicalcium silicate phase to produce C2S phase incorporating LDH composite. The characterizations of the developed phases by XRD and SEM indicate the formation of stoichiometric LDH phases Zn6Al2(OH)16CO3.4H2O and non-stoichiometric Zn0.61Al0.39 (OH)2(CO3)0.195.xH2O, the incorporation of Zn in the belitic C2S phase and not Al. The obtained micrographs by SEM(EDAX) analysis show new morphology of the stabilized composite.

Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 9-13
Theerasak Rojanarata ◽  
Kittithat Maithongdee ◽  
Nattapong Yuwansri ◽  
Sirada Kaewprasert ◽  
Thana Thanayutsiri ◽  

In many pharmacopoeias, the limit test used for determining the level of aluminum in citric acid labeled for use in the manufacture of dialysate, is based on solvent extraction using 8-hydroxyquinoline and measurement of fluorescence. However, the fluorescence intensity (F.I.) readout from the extract of citric acid samples has been found to be highly dubious, showing low value, and even lower than that of a blank solution. The aim of this work therefore was to examine what effects the matrix has on the test. The comparison of the two standard curves of aluminum solutions in water, against those prepared in citric acid solutions revealed that they differed greatly in terms of slope and y-intercept. In addition, the F.I. values on the plot of the citric acid solution were much lower than that prepared in the water. In another experiment, a decrease in the F.I. of aluminum solution was clearly seen when the co-existing concentration of citric acid was increased. The results inferred that citric acid interfered with the test due to its acidity and metal-chelating capabilities. Based on this evidence, the pharmacopeial limit test for aluminum in citric acid should be revised; otherwise, it could yield results that underestimate aluminum levels and lead to inaccurate conclusions

2022 ◽  
Shinta Watanabe ◽  
Yusuke Inaba ◽  
Miki Harigai ◽  
Kenji Takeshita ◽  
Jun Onoe

Abstract We have examined the uptake mechanisms of platinum-group-metals (PGMs) and molybdenum (Mo) ions into PBNPs in a nitric acid solution for 24-h sorption test, using inductively coupled plasma atomic emission spectroscopy, powder XRD, and UV-Vis-NIR spectroscopy in combination with first-principles calculations, and revealed that the Ru4+ and Pd2+ ions are incorporated into PBNPs by substitution with Fe3+ and Fe2+ ions of the PB framework, respectively, whereas the Rh3+ ion is incorporated into PBNPs by substitution mainly with Fe3+ and minorly with Fe2+ ion, and Mo6+ ion is incorporated into PBNPs by substitution with both Fe2+ and Fe3+ ions, with maintaining the crystal structure before and after the sorption test. Assuming that the amount of Fe elusion is equal to that of PGMs/Mo substitution, the substitution efficiency is estimated to be 39.0% for Ru, 47.8% for Rh, 87% for Pd, and 17.1% for Mo6+. This implies that 0.13 g of Ru, 0.16 g of Rh, 0.30 g of Pd, and 0.107 g of Mo can be recovered by using 1g PBNPs with a chemical form of KFe(III)[Fe(II)(CN)6].

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1121-1129
Jinxing Kang ◽  
Yayun Wang ◽  
Yunfei Qiu

The effect of Fe3+ ions on the ocean manganese nodule reductive leaching in imitated sulphuric acid solutions was investigated.

2022 ◽  
Vol 280 ◽  
pp. 119805
Qian Xiao ◽  
Lianjun Song ◽  
Xueyu Wang ◽  
Haowei Xu ◽  
Lanlan He ◽  

Sign in / Sign up

Export Citation Format

Share Document