chloride ion
Recently Published Documents


TOTAL DOCUMENTS

3153
(FIVE YEARS 597)

H-INDEX

80
(FIVE YEARS 10)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Dániel Szöllősi ◽  
Thomas Stockner

The human serotonin transporter (hSERT) removes the neurotransmitter serotonin from the synaptic cleft by reuptake into the presynaptic nerve terminal. A number of neurologic diseases are associated with dysfunction of the hSERT, and several medications for their treatment are hSERT blockers, including citalopram, fluoxetine, and paroxetine. The substrate transport is energized by the high concentration of external NaCl. We showed through molecular dynamics simulations that the binding of NaCl stabilized the hSERT in the substrate-binding competent conformation, which was characterized by an open access path to the substrate-binding site through the outer vestibule. Importantly, the binding of NaCl reduced the dynamics of the hSERT by decreasing the internal fluctuations of the bundle domain as well as the movement of the bundle domain relative to the scaffold domain. In contrast, the presence of only the bound chloride ion did not reduce the high domain mobility of the apo state.


2022 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Xiangsheng Chen ◽  
Jun Shen

The adverse effects of a hostile marine environment on concrete structures inevitably result in great economic loss and may contribute to catastrophic failure. There is limited information on the durability of concrete in a tensile stress-chloride ion-carbon dioxide (TCC) multiple-corrosion environment. The objective of this study is to explore the impact of a TCC multiple-corrosion environment on concrete considering three coupled factors of compressive strength, Cl− penetration, and carbonation. Dry–wet cycle tests were conducted to determine the strength degradation and Cl− penetration concentration of concrete in a hostile multiple-corrosion marine environment. The results show that the effects of water-soluble chloride ions (Cl−), carbon dioxide (CO2), and tensile stress on concrete are not a simple superposition, but involve obvious interaction. The compressive strength of a concrete specimen first increases and then decreases in chlorine salt-carbon tests. The Cl− concentration and tensile stress affect the carbonation depth of concrete, which increases with an increase in Cl− concentration, and with the application of tensile stress. The Cl− concentration has an obvious effect on the carbonation depth. In addition to experimental observations, a stepwise regression equation was established based on the multiple linear regression theory. A correlation analysis considering different factors was conducted to reflect the corrosion results more directly.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 197
Author(s):  
Wei Du ◽  
Erwang Li ◽  
Runsheng Lin

As an intelligent material, microcapsules can efficiently self-heal internal microcracks and microdefects formed in cement-based materials during service and improve their durability. In this paper, microcapsules of nano-CaCO3/ceresine wax composite shell encapsulated with E-44 epoxy resin were prepared via the melt condensation method. The core content, compactness, particle size distribution, morphologies, chemical structure and micromechanical properties of microcapsules were characterized. The results showed that the encapsulation ability, mechanical properties and compactness of microcapsules were further improved by adding nano-CaCO3 to ceresine wax. The core content, elastic modulus, hardness and weight loss rate (60 days) of nano-CaCO3/ceresine wax composite shell microcapsules (WM2) were 80.6%, 2.02 GPA, 72.54 MPa and 1.6%, respectively. SEM showed that WM2 was regularly spherical with a rough surface and sufficient space inside the microcapsules to store the healing agent. The incorporation of WM2 to mortar can greatly improve the self-healing ability of mortar after pre-damage. After 14 days of self-healing, the compressive strength recovery rate, proportion of harmful pores and chloride ion diffusion coefficient recovery rate increased to 90.1%, 45.54% and 79.8%, respectively. In addition, WM2 also has good self-healing ability for mortar surface cracks, and cracks with initial width of less than 0.35 mm on the mortar surface can completely self-heal within 3 days.


2022 ◽  
Vol 8 (1) ◽  
pp. 458-465
Author(s):  
Olivier Florent Essouli ◽  
Edmond NICAISE Malanda Nimy ◽  
Timothée Miyouna ◽  
Sophie Aïssatou Gladima-Siby ◽  
Laurent Matini ◽  
...  

To determine the origin and the processes of groundwater mineralization in the Mbeubeuss lake area, the major ion concentrations of the groundwater were compared to those of the rainwaters which constitute the input function of the aquifer of the Quaternary sands in the area of lake Mbeubeuss. The physico-chemistry of groundwater near the public discharge and its surroundings, has shown that the true value of the electrical conductivity of waters are around 2000 µS/cm. Values of electrical conductivity greater than 2000 µS/cm would represent the particular mineralization of ground waters by the public discharge of lake Mbeubeuss. The chemical facies of ground waters are dominated by the sodium and potassium chloride and calcium chloride facies. The study of the relationship between the major chemical elements and the chloride ion and the representation in the modified Chadha diagram of the chemical analyzes of ground waters from the campaigns of July 1998, July 2002 and March 2003, made it possible to highlight the different sources and processes controlling the mineralization of ground waters in the Mbeubeuss Lake area. Despite the proximity to the sea which suggests a considerable contribution of salts by aerosols and sea spray, the mineralization of ground waters in the area of lake Mbeubeuss is largely due to leachate from household waste and the influence of old sediments of the dry lake Mbeubeuss. The main processes controlling the mineralization of ground waters are marine contributions (aerosols and sea spray), dissolution-precipitation of minerals from the aquifer matrix, atmospheric CO2 diffusion, base exchanges, dilution-concentration and anthropogenic pollution.


2022 ◽  
Vol 8 ◽  
Author(s):  
Changyong Li ◽  
Haibin Geng ◽  
Siyi Zhou ◽  
Manman Dai ◽  
Baoshan Sun ◽  
...  

Producing concrete with large content of fly ash attracts increasing attention in low carbon building materials. In this paper, the fly-ash concrete (FAC) with a content of fly ash no less than 50% total weight of binders was developed. The adaptability of fly ash used for concrete was firstly examined by testing the water requirement of normal consistency and the setting time for cement fly-ash paste, and the strengths of cement fly-ash mortar at the curing age of 7 and 28 days. The factors of water-to-binder ratio from 0.3 to 0.5, the content of fly-ash from 40% to 80%, and the excitation measures with additional Ca(OH)2 and steam curing at initial were considered. After that, the FAC was designed by adding an excessive content of fly ash to reduce the water-to-binder ratio from 0.50 to 0.26, and the content of fly-ash varied from 52% to 60%. Results show that the cement fly-ash paste presented a reduction of water requirement and an elongation of setting time with the increased content of fly ash. This provides a foundation of maintaining the workability of fresh FAC with a decreased water-to-binder ratio by adding the excessive content of fly ash. The cement fly-ash mortar had a lower early strength due to the slow reaction of fly-ash with Ca(OH)2, which could be improved by steam curing at the initial 24 h due to the excitation of fly-ash activity. At curing age of 28 days, the FAC had the expected axial compressive strength and modulus of elasticity, but the tensile strength was lower than predicted. At the curing age of 56 days, all the basic mechanical properties of FAC reached the prediction. The resistances of FAC to chloride ion penetration and carbonization were realized at a very high level as specified in codes.


2022 ◽  
Vol 1048 ◽  
pp. 311-320
Author(s):  
Tarun Gehlot ◽  
Suresh Singh Sankhla ◽  
Sangeeta Parihar

In this study conventional concrete of M40 grade developed with diverse water binder ratio and fixed optimum dosage of 30% mineral admixture fly ash and GGBS with weight of cement .Compression test has been conducted on cube samples and Rapid Chloride permeability test (RCPT) are conducted on cylindrical specimens to acknowledge durability parameter. Compression test results has been enhanced with replacement of supplementary cementitious materials and chloride ion permeability has been reduced with substitution of fly ash and GGBS .incremental of water binder ratio also reduce the permeability value however compression value increased


Author(s):  
Silas de Andrade Pinto ◽  
Sandro Lemos Machado ◽  
Daniel Véras Ribeiro

Abstract Corrosion is one of the main phenomena that lead to pathological manifestations in reinforced concrete structures under aggressive environments. with the chloride ion being the most responsible for its occurrence. In this way, understanding the transport mechanisms of this ion through the microstructure of the concrete is of fundamental importance to prevent or delay the penetration of these aggressive agents to guarantee a durable structure. In the literature, there are extensive studies concerning the diffusion of chlorides in concrete and the influence of pozzolanic additions in this mechanism. However, only a few correlate the different methods of analysis. This work aims to determine the chloride ion diffusion coefficients in concrete containing various levels of silica fume (5%, 10%, and 15%) or varying the mortar content (54%, 80%, and 100%), and compares the results obtained through column tests and chloride migration tests. It was observed that, although the techniques used were quite distinct, the diffusion values obtained were similar, contributing to the validation of both techniques. Furthermore, the variation in the mortar ratio causes a reduction in the interfacial transition zone of coarse aggregate/mortars and an increase in the content of aluminates, which promotes a similar effect to the use of silica fume.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012041
Author(s):  
Hong Fei ◽  
Zifu Hu

Abstract Due to the environmental degradation caused by soil erosion, it is of great significance to establish the relationship model between geological environmental factors and piping erosion. The method to determine the prone area of pipeline corrosion is limited. This paper introduces the mechanism of reinforcement corrosion, points out the non-destructive detection methods of common steel corrosion, and puts forward the measures to prevent and maintain the corrosion of reinforcement from the aspects of design, construction and material selection, so as to prolong the service life of concrete structure. Abrasion, capitation and chemical attack in concrete hydraulic structures can lead to deterioration of spillways, stilling basins, chutes, slabs and transverse joints, concrete blocks under sluices and any irregular surfaces affected by high flow rates. There are numerous coatings on the market that can be used to repair damaged surfaces. However, the basic data provided by the manufacturer is very limited, and if so, it is usually limited to room temperature values. The results show that the data of concrete, corrosion solution and chloride ion are 0.534, 0.673 and 0.384 respectively.


2021 ◽  
Vol 21 (6) ◽  
pp. 1-7
Author(s):  
Seunghak Choi ◽  
Seungyeon Han ◽  
Hyeonsuk Kim ◽  
Kyongku Yun ◽  
Taeho Ha

Shotcrete should be attached to the ground and should have stable strength for a long-term. It should develop strength earlier for rapid work. Therefore, in this study, three types of accelerators—aluminate, cement mineral, and alkali-free—were selected and mixed to secure the initial strength. Depending on the type and mixing rate of each accelerator, slump, air amount, and compressive strength were used to evaluate the basic properties, boiling water absorption test, and chloride ion penetration resistance to conduct durability analysis. The mixing of aluminate-based and cement-mineral-based accelerators was effective in improving the initial strength, and alkali-free accelerator was effective in improving the long-term strength. The mixture to which accelerators were not mixed showed the highest water-tightness.


Sign in / Sign up

Export Citation Format

Share Document