Heat flow, heat generation and crustal temperature in the kapuskasing area of the Canadian Shield

1971 ◽  
Vol 11 (4) ◽  
pp. 287-303 ◽  
Author(s):  
Vladimir Cermak ◽  
Alan M. Jessop
2010 ◽  
Vol 47 (4) ◽  
pp. 389-408 ◽  
Author(s):  
Claire Perry ◽  
Carmen Rosieanu ◽  
Jean-Claude Mareschal ◽  
Claude Jaupart

Geothermal studies were conducted within the framework of Lithoprobe to systematically document variations of heat flow and surface heat production in the major geological provinces of the Canadian Shield. One of the main conclusions is that in the Shield the variations in surface heat flow are dominated by the crustal heat generation. Horizontal variations in mantle heat flow are too small to be resolved by heat flow measurements. Different methods constrain the mantle heat flow to be in the range of 12–18 mW·m–2. Most of the heat flow anomalies (high and low) are due to variations in crustal composition and structure. The vertical distribution of radioelements is characterized by a differentiation index (DI) that measures the ratio of the surface to the average crustal heat generation in a province. Determination of mantle temperatures requires the knowledge of both the surface heat flow and DI. Mantle temperatures increase with an increase in surface heat flow but decrease with an increase in DI. Stabilization of the crust is achieved by crustal differentiation that results in decreasing temperatures in the lower crust. Present mantle temperatures inferred from xenolith studies and variations in mantle seismic P-wave velocity (Pn) from seismic refraction surveys are consistent with geotherms calculated from heat flow. These results emphasize that deep lithospheric temperatures do not always increase with an increase in the surface heat flow. The dense data coverage that has been achieved in the Canadian Shield allows some discrimination between temperature and composition effects on seismic velocities in the lithospheric mantle.


2021 ◽  
Author(s):  
◽  
Om Prakash Pandey

<p>In this regional heat flow study of New Zealand temperatures have been measured in available boreholes using a specially constructed thermistor probe, and existing temperature information has been incorporated from various sources including oil prospecting boreholes. Thermal conductivity has been measured in the laboratory on 581 samples. Newly determined values of heat flow are given for 105 locations; values for the South Island are here presented for the first time. Most of the heat flow values have been grouped in eight regions based on the level of heat flow. This classification can be related to the occurrence of certain surface manifestations and geophysical anomalies, and to regional plate tectonics. High heat flow in three regions is consistent with melting conditions being reached at depths between 35km and 45km. These are the Taranaki Region, the West Coast Region and the Great South Basin. The average regional heat flow for these regions varies from 86.4 mW/m2 to 110.7 mW/m2. Much lower heat flow is obtained in the Hikurangi and Marlborough-Canterbury Regions; these may possibly be interconnected. Elsewhere the heat flow is low to normal with isolated highs. The broad distribution of heat flow in the North Island is typical for an active subduction region. Radioactive heat generation has been measured on rock types from various localities, and large variations have been found. The heat flow - heat generation relationship has been studied for 42 sites. A linear relationship is found only in the Taranaki and Hikurangi Regions. Temperature calculations show large differences in the deep-seated temperature distribution beneath New Zealand, and this has also been reflected in the distribution of "reduced heat flow". Temperature and heat flow can be correlated with upper mantle inhomogeneity. The inferred variation of radioactive heat generation with depth has been studied for areas beneath the Western Canterbury Region. A mean heat generation of 1.56 plus-minus .07 muW/m3 has been found in a sequence which has been inferred to occur between 17km and 30km in depth under the region; this is very much higher than the usually adopted values for the lower crust. Normal heat flow observed in the Western Cook Strait Region, and the existence of good seismic wave transmission beneath the same region, can be attributed to crustal and lithospheric thickening. The relevance of present study to petroleum occurrences has been examined and it is found that in areas of proven hydrocarbon potential the heat flow is high.</p>


2021 ◽  
Author(s):  
◽  
Om Prakash Pandey

<p>In this regional heat flow study of New Zealand temperatures have been measured in available boreholes using a specially constructed thermistor probe, and existing temperature information has been incorporated from various sources including oil prospecting boreholes. Thermal conductivity has been measured in the laboratory on 581 samples. Newly determined values of heat flow are given for 105 locations; values for the South Island are here presented for the first time. Most of the heat flow values have been grouped in eight regions based on the level of heat flow. This classification can be related to the occurrence of certain surface manifestations and geophysical anomalies, and to regional plate tectonics. High heat flow in three regions is consistent with melting conditions being reached at depths between 35km and 45km. These are the Taranaki Region, the West Coast Region and the Great South Basin. The average regional heat flow for these regions varies from 86.4 mW/m2 to 110.7 mW/m2. Much lower heat flow is obtained in the Hikurangi and Marlborough-Canterbury Regions; these may possibly be interconnected. Elsewhere the heat flow is low to normal with isolated highs. The broad distribution of heat flow in the North Island is typical for an active subduction region. Radioactive heat generation has been measured on rock types from various localities, and large variations have been found. The heat flow - heat generation relationship has been studied for 42 sites. A linear relationship is found only in the Taranaki and Hikurangi Regions. Temperature calculations show large differences in the deep-seated temperature distribution beneath New Zealand, and this has also been reflected in the distribution of "reduced heat flow". Temperature and heat flow can be correlated with upper mantle inhomogeneity. The inferred variation of radioactive heat generation with depth has been studied for areas beneath the Western Canterbury Region. A mean heat generation of 1.56 plus-minus .07 muW/m3 has been found in a sequence which has been inferred to occur between 17km and 30km in depth under the region; this is very much higher than the usually adopted values for the lower crust. Normal heat flow observed in the Western Cook Strait Region, and the existence of good seismic wave transmission beneath the same region, can be attributed to crustal and lithospheric thickening. The relevance of present study to petroleum occurrences has been examined and it is found that in areas of proven hydrocarbon potential the heat flow is high.</p>


Sign in / Sign up

Export Citation Format

Share Document