Basalts, water, or shear zones in the lower continental crust?

1990 ◽  
Vol 173 (1-4) ◽  
pp. 163-174 ◽  
Author(s):  
Mike Warner
Geology ◽  
1997 ◽  
Vol 25 (1) ◽  
pp. 15 ◽  
Author(s):  
Eric Pili ◽  
Simon M. F. Sheppard ◽  
Jean-Marc Lardeaux ◽  
Jean-Emmanuel Martelat ◽  
Christian Nicollet

Author(s):  
Luca Menegon ◽  
Lucy Campbell ◽  
Neil Mancktelow ◽  
Alfredo Camacho ◽  
Sebastian Wex ◽  
...  

This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25–40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1635-1649 ◽  
Author(s):  
Friedrich Hawemann ◽  
Neil Mancktelow ◽  
Sebastian Wex ◽  
Giorgio Pennacchioni ◽  
Alfredo Camacho

Abstract. Garnet is a high-strength mineral compared to other common minerals such as quartz and feldspar in the felsic crust. In felsic mylonites, garnet typically occurs as porphyroclasts that mostly evade crystal plastic deformation, except under relatively high-temperature conditions. The microstructure of granulite facies garnet in felsic lower-crustal rocks of the Musgrave Ranges (Central Australia) records both fracturing and crystal plastic deformation. Granulite facies metamorphism at ∼1200 Ma generally dehydrated the rocks and produced millimetre-sized garnets in peraluminous gneisses. A later ∼550 Ma overprint under sub-eclogitic conditions (600–700 ∘C, 1.1–1.3 GPa) developed mylonitic shear zones and abundant pseudotachylyte, coeval with the neocrystallization of fine-grained, high-calcium garnet. In the mylonites, granulite facies garnet porphyroclasts are enriched in calcium along rims and fractures. However, these rims are locally narrower than otherwise comparable rims along original grain boundaries, indicating the contemporaneous diffusion and fracturing of garnet. The fractured garnets exhibit internal crystal plastic deformation, which coincides with areas of enhanced diffusion, usually along zones of crystal lattice distortion and dislocation walls associated with subgrain rotation recrystallization. The fracturing of garnet under dry lower-crustal conditions, in an otherwise viscously flowing matrix, requires transient high differential stress, most likely related to seismic rupture, consistent with the coeval development of abundant pseudotachylyte. Highlights. Garnet is deformed by fracturing and crystal plasticity under dry lower-crustal conditions. Ca diffusion profiles indicate multiple generations of fracturing. Diffusion is promoted along zones of higher dislocation density. Fracturing indicates transient high-stress (seismic) events in the lower continental crust.


1993 ◽  
Vol 98 (B1) ◽  
pp. 581-607 ◽  
Author(s):  
Alex N. Halliday ◽  
Alan P. Dickin ◽  
Robert N. Hunter ◽  
Gareth R. Davies ◽  
Tim J. Dempster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document