granulite facies
Recently Published Documents


TOTAL DOCUMENTS

1048
(FIVE YEARS 170)

H-INDEX

65
(FIVE YEARS 7)

Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


2021 ◽  
Vol 26 (2) ◽  
pp. 79-97
Author(s):  
Drona Adhikari ◽  
Champak Babu Silwal ◽  
Lalu Prasad Paudel

Systematic study of the eastern Nepal Himalaya was started after 1950 when Nepal opened up for foreigners. Thereafter, several geological studies have been carried out in the Arun-Tamor region of eastern Nepal Himalaya. The Tibetan-Tethys sedimentary sequence, the Higher Himalayan amphibolite to granulite facies metamorphic crystalline sequence, the Lesser Himalayan sedimentary and greenschist facies metasedimentary sequences, and the Siwalik foreland molassic sedimentary sequence are the four major tectonic units of this area. The individual nomenclature schemes of stratigraphic units, the correlational dispute, the positions and interpretations of regional geological structures are some examples that have created controversies regarding the lithostratigraphy and structural arrangements. The difference in age and genesis of the Main Central Thrust and its effects in the metamorphism of the eastern Nepal Himalaya are the exemplification of the contradiction in the interpretation of the tectonometamorphic history. There is a gap in research in the tectonics and episodic metamorphic evolution of the area owing to the bare approach in the microstructural and geochronological investigation. Future investigations should be focused on solving the above mentioned controversies and narrowing down the research gaps in tectonic and metamorphic evolution.


2021 ◽  
Author(s):  
E.P. Metzger ◽  
et al. ◽  
M.L. Leech

<div>Text S1: Supplemental text. Figure S1: Cathodoluminescence images for all analyzed zircon grains. Figure S2: REE spider plots for zircon. Figure S3: Tukey honestly significant difference (HSD) for the timing of anatexis. Table S1: Cathodoluminescence images for all analyzed zircon grains. Table S2. Grossular content of garnet used to calculate the 95% confidence intervals for isopleth modeling in Figure 13. <br></div>


Geosphere ◽  
2021 ◽  
Author(s):  
Ellen P. Metzger ◽  
Mary L. Leech ◽  
Michael W. Davis ◽  
Jackson V. Reeder ◽  
Brandon A. Swanson ◽  
...  

This study combines field observations, mineral and whole-rock geochemistry, phase equilibrium modeling, and U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology to investigate sillimanite-bearing felsic migmatites exposed on Ledge Mountain in the central Adirondack Highlands (New York, USA), part of an extensive belt of mid-crustal rocks comprising the hinterland of the Mesoproterozoic Grenville orogen. Phase equilibrium modeling suggests minimum peak metamorphic conditions of 960–1025 °C and 11–12.5 kbar during the Ottawan orogeny—significantly higher pressure-temperature conditions than previously determined—followed by a period of near-isothermal decompression, then isobaric cooling. Petrography reveals abundant melt-related microstructures, and pseudosection models show the presence of at least ~15%–30% melt during buoyancy-driven exhumation and decompression. New zircon data document late Ottawan (re)crystallization at ca. 1047 ± 5 to 1035 ± 2 Ma following ultrahigh-temperature (UHT) metamorphism and anatexis on the retrograde cooling path. Inherited zircon cores give a mean date of 1136 ± 5 Ma, which suggests derivation of these felsic granulites by partial melting of older igneous rocks. The ferroan, anhydrous character of the granulites is similar to that of the ca. 1050 Ma Lyon Mountain Granite and consistent with origin in a late- to post-Ottawan extensional environment. We present a model for development of a late Ottawan migmatitic gneiss dome in the central Adirondacks that exhumed deep crustal rocks including the Snowy Mountain and Oregon anorthosite massifs with UHT Ledge Mountain migmatites. Recognition of deep crustal meta-plutonic rocks recording UHT metamorphism in a migmatite gneiss dome has significant implications for crustal behavior in this formerly thickened orogen.


2021 ◽  
Vol 43 (5) ◽  
pp. 80-94
Author(s):  
М. А. Yaroshchuk ◽  
А. V. Vaylo ◽  
А. Ye. Ganevich

The article discusses the features of the deep and crustal structure of the Golovanevskaya zone, the geochronological sequence of the main stages of its formation. The characteristic of thorium-uranium ore occurrences and deposits is given; and the main stages of their formation. The stages of successive concentrations of uranium and thorium in connection with the processes of sedimentation, volcanism, metamorphism, ultrametamorphism, and tectonic-magmatic activation are determined. The concentration of uranium and thorium was multi-stage and increased with each subsequent geological process. The deep and crustal sources of uranium and thorium, their ratio in the pre-ore main ore-generating stages of deposit formation are considered. It is shown that the formation of deposits became possible in the Proterozoic when neutral and alkaline water-potassium fluids replaced the deep acidic Archean fluids, and the formation of thorium-uranium rock complexes became possible in the crust. The totality of the data obtained is the basis for classifying the thorium-uranium mineralization as the metamorphogenic type. The presence in the Golovanevskaya zone of Lozovatsky, Yuzhny, Kalinovsky deposits, and numerous thorium-uranium ore occurrences determine this zone as promising for developing the thorium-uranium raw material base of the nuclear energy of Ukraine. Thorium-uranium mineralization is also genetically typical for the Kryvyi Rih-Inguletskaya, Orekhovo-Pavlograd interblock suture zones; detailed research is needed to determine their prospects. The confinement of thorium-uranium mineralization specifically to interblock zones is due to a combination of the following main regional features: the presence of Neoarchean thorium-uranium-bearing rock complexes; their metamorphism under conditions of granulite facies; intense ultrametamorphism; development of deep fluid-conducting faults; deep level of the erosional section, in which the products of the rare-metal and pyrite stages of thorium-uranium mineralization were exposed.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Juan A. Murra ◽  
Edgardo G. Baldo ◽  
Sebastián O. Verdecchia ◽  
Carlos D. Ramacciotti ◽  
Carmen Galindo

The El Escorial marbles (Cushamen Metamorphic Complex) along with amphibolites form metamorphic septa within the permian granitoids of the Mamil Choique Formation (261-286 Ma). The metamorphism, determined in granulite facies migmatic gneisses septa cropping out 120 km southwest of El Escorial, occurs at 311 ± 27 Ma (CHIME method in monazite). The marbles are calcitic (calcite > 95%, R.I.: 0.5 to 2.5%) and show 87Sr/86Sr values between 0.70768 and 0.70825 (n = 10). The data provided in this work, added to previous contributions, allow to constraints the sedimentation age of the silicic-carbonate successions of the Cushamen Metamorphic Complex between ca. 385 and 335 Ma. This suggests the existence of a mixed carbonate-siliciclastic platform at least in the southernmost portion of southwestern Gondwana between Middle Devonian and early Carboniferous (Middle Mississippian).


2021 ◽  
Author(s):  
Eleni Wood ◽  
Clare Warren ◽  
Nick Roberts ◽  
Tom Argles ◽  
Barbara Kunz ◽  
...  

During continental collision, crustal rocks are buried, deformed, transformed and exhumed. The rates, timescales and tectonic implications of these processes are determined by linking geochemical, geochronological and microstructural data from metamorphic rock-forming and accessory minerals. Exposures of lower orogenic crust provide important insights into orogenic evolution, but are rare in young continental collision belts such as the Himalaya. In NW Bhutan, eastern Himalaya, a high-grade metamorphic terrane provides a rare glimpse into the evolution and exhumation of the deep eastern Himalayan crust and a detailed case study for deciphering the rates and timescales of deep-crustal processes in orogenic settings. We have collected U-Pb isotope and trace element data from allanite, zircon and garnet from metabasite boudins exposed in the Masang Kang valley in NW Bhutan. Our observations and data suggest that allanite cores record growth under eclogite facies conditions (>17 kbar ~650°C) at ca. 19 Ma, zircon inner rims and garnet cores record growth during decompression under eclogite facies conditions at ca 17-15.5. Ma, and symplectitic allanite rims, garnet rims and zircon outer rims record growth under granulite facies conditions at ~9-6 kbar; >750°C at ca. 15-14.5 Ma. Allanite is generally considered unstable under granulite-facies conditions and we think that this is the first recorded example of such preservation, likely facilitated by rapid exhumation. Our new observations and petrochronological data show that the transition from eclogite to granulite facies conditions occurred within 4-5 Ma in the Eastern Himalaya. Our data indicate that the exhumation of lower crustal rocks across the Himalaya was diachronous and may have been facilitated by different tectonic mechanisms.


2021 ◽  
Vol 97 (11) ◽  
pp. 1331-1339
Author(s):  
Priyanka Tripathi ◽  
H. K. Sachan ◽  
V. Rajagopalan ◽  
O. P. Pandey ◽  
Sujeet Kumar Dwivedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document