The northern edge of the Gulf of Elat

1993 ◽  
Vol 226 (1-4) ◽  
pp. 319-331 ◽  
Author(s):  
Zvi Ben-Avraham ◽  
Gideon Tibor
Keyword(s):  
Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adrien André ◽  
Johan Michaux ◽  
Jorge Gaitan ◽  
Virginie Millien

Abstract Rapid climate change is currently altering species distribution ranges. Evaluating the long-term stress level in wild species undergoing range expansion may help better understanding how species cope with the changing environment. Here, we focused on the white-footed mouse (Peromyscus leucopus), a widespread small mammal species in North-America whose distribution range is rapidly shifting northward. We evaluated long-term stress level in several populations of P. leucopus in Quebec (Canada), from the northern edge of the species distribution to more core populations in Southern Quebec. We first tested the hypothesis that populations at the range margin are under higher stress than more established populations in the southern region of our study area. We then compared four measures of long-term stress level to evaluate the congruence between these commonly used methods. We did not detect any significant geographical trend in stress level across our study populations of P. leucopus. Most notably, we found no clear congruence between the four measures of stress level we used, and conclude that these four commonly used methods are not equivalent, thereby not comparable across studies.


2012 ◽  
Vol 39 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Adriano Nobile ◽  
Carolina Pagli ◽  
Derek Keir ◽  
Tim J. Wright ◽  
Atalay Ayele ◽  
...  

2017 ◽  
Vol 59 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Maxime Lavoie ◽  
Pierre Blanchette ◽  
Serge Larivière ◽  
Jean-Pierre Tremblay

Author(s):  
Felipe Dargent ◽  
Sydney M Gilmour ◽  
Emma A Brown ◽  
Rees Kassen ◽  
Heather M Kharouba

Every year monarch butterflies (Danaus plexippus Linnaeus, 1758) from the eastern North American population migrate from Mexico to Southern Canada in the spring. This northward migration has been shown to reduce monarch infection with the host-specific parasite Ophryocystis elektroscirrha (OE) (McLaughlin and Myers, 1970); yet, the prevalence of OE at their range limits, and the mechanism(s) responsible, is unknown. We assessed OE infection levels of monarchs at the northern edge of the eastern population distribution around Ottawa, Canada, and found extremely low levels of infection (~1% with upper confidence intervals close to 3%). Low OE infection levels are likely due to low densities of monarchs in this region and/or migratory escape effects, where migrating individuals leave behind areas with high density of conspecifics and high potential for parasite accumulation and transmission. Future work should aim to disentangle the relative contribution of these two mechanisms for governing the decrease in parasitism at the range limits of migratory populations.


2008 ◽  
Vol 21 (17) ◽  
pp. 4149-4167 ◽  
Author(s):  
Eric D. Maloney ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen

Abstract Boreal summer intraseasonal (30–90-day time scale) sea surface temperature (SST) variability in the east Pacific warm pool is examined using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) sea surface temperatures during 1998–2005. Intraseasonal SST variance maximizes at two locations in the warm pool: in the vicinity of 9°N, 92°W near the Costa Rica Dome and near the northern edge of the warm pool in the vicinity of 19°N, 108°W. Both locations exhibit a significant spectral peak at 50–60-day periods, time scales characteristic of the Madden–Julian oscillation (MJO). Complex empirical orthogonal function (CEOF) and spectra coherence analyses are used to show that boreal summer intraseasonal SST anomalies are coherent with precipitation anomalies across the east Pacific warm pool. Spatial variations of phase are modest across the warm pool, although evidence exists for the northward progression of intraseasonal SST and precipitation anomalies. Intraseasonal SSTs at the north edge of the warm pool lag those in the vicinity of the Costa Rica Dome by about 1 week. The MJO explains 30%–40% of the variance of intraseasonal SST anomalies in the east Pacific warm pool during boreal summer. Peak-to-peak SST variations of 0.8°–1.0°C occur during MJO events. SST is approximately in quadrature with MJO precipitation, with suppressed (enhanced) MJO precipitation anomalies leading positive (negative) SST anomalies by 7–10 days. Consistent with the CEOF and coherence analyses, MJO-related SST and precipitation anomalies near the Costa Rica Dome lead those at the northern edge of the warm pool by about 1 week.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 710
Author(s):  
Ladislav Bocak ◽  
Michal Motyka ◽  
Dominik Kusy ◽  
Renata Bilkova

We reviewed the species-level classification of Metriorrhynchina net-winged beetles to make the group accessible for further studies. Altogether, 876 valid species are listed in a checklist along with known synonyms, combinations, and distribution data. The compilation of geographic distribution showed that Metriorrhynchina is distributed mainly in the Australian region with very high diversity in the islands at the northern edge of the Australian craton, i.e., in the Moluccas and New Guinea (54 and 423 spp. respectively). The neighboring northern part of the Australian continent houses a majority of known Australian species (112 spp.) and the diversity of net-winged beetles gradually decreases to the south (43 spp.). The fauna of Sulawesi is highly endemic at the generic level (4 of 10 genera, 67 of 84 spp.). Less Metriorrhynchina occur in the Solomon Islands and Oceania (in total 22 spp.). The Oriental Metriorrhynchina fauna consists of a few genera and a limited number of species, and most of these are known from the Philippines (51 of 94 Oriental spp.). We identified a high species level turn-over between all neighboring landmasses. The genus-level endemism is high in Sulawesi (4 genera) and New Guinea (11 genera), but only a single genus is endemic to Australia. During the compilation of the checklist, we identified some homonyms, and we propose the following replacement names and a new synonym: Metriorrhynchus pseudobasalis, nom. nov. for M. basalis Lea, 1921 nec M. basalis Bourgeois, 1911; Metriorrhynchus pseudofunestus, nom. nov. for M. funestus Lea, 1921 nec M. funestus (Guérin-Méneville, 1838), Trichalus pseudoternatensis, nom. nov. for T. ternatensis Kleine, 1930 nec T. ternatensis Bourgeois, 1900, Procautires subparallelus, nom. nov. for P. parallelus (Pic, 1926) nec P. parallelus (Bourgeois, 1883), and Cautires pseudocorporaali, nom. nov. for C. corporaali (Pic, 1921: 12), (formerly Odontocerus and Cladophorus) nec C. corporaali (Pic, 1921) (formerly Bulenides, later Cautires). Diatrichalus biroi Kleine, 1943, syn. nov. is proposed as a junior subjective synonym of D. subarcuatithorax (Pic, 1926). Altogether, 161 new combinations are proposed, and 47 species earlier placed in Xylobanus Waterhouse, 1879 transferred from Cautirina to Metriorrhynchina incertae sedis. The study clarifies the taxonomy of Metriorrhynchini and should serve as a restarting point for further taxonomic, evolutionary, and biogeographic studies.


Sign in / Sign up

Export Citation Format

Share Document