Behavioral measures of spectral sensitivity in the goldfish following chromatic adaptation

1969 ◽  
Vol 9 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Dean Yager
1969 ◽  
Vol 54 (5) ◽  
pp. 636-649 ◽  
Author(s):  
John Nolte ◽  
Joel E. Brown

The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.


2006 ◽  
Vol 23 (3-4) ◽  
pp. 471-478 ◽  
Author(s):  
ANDREW STOCKMAN ◽  
ETHAN D. MONTAG ◽  
DANIEL J. PLUMMER

Paradoxical shifts in human color (spectral) sensitivity occur on deep-red (658 nm) background fields. As the radiance of the deep-red background is increased from low to moderate levels, the spectral sensitivity for detecting 15-Hz flicker shifts toward shorter wavelengths, although by more than is predicted by selective chromatic adaptation (e.g., Eisner & MacLeod, 1981; Stromeyer et al., 1987; Stockman et al., 1993). Remarkably, though, at higher background radiances, the spectral sensitivity then shifts precipitously back towards longer wavelengths. Here, we show that both effects are due in large part to destructive and constructive interference between signals generated by the same cone type. Contrary to the conventional model of the human visual system, the M- and L-cone types contribute not just the customary fast signals to the achromatic or luminance pathway, but also slower signals of the same or opposite sign. The predominant signs of the slow M- and L-cone signals change with background radiance, but always remain spectrally opposed (M-L or L-M). Consequently, when the slow and fast signals from one cone type destructively interfere, as they do near 15 Hz, those from the other cone type constructively interfere, causing the paradoxical shifts in spectral sensitivity. The shift in spectral sensitivity towards longer wavelengths is accentuated at higher temporal frequencies by a suppression of fast M-cone signals by deep-red fields.


1967 ◽  
Vol 50 (9) ◽  
pp. 2267-2287 ◽  
Author(s):  
Robert M. Chapman ◽  
Abner B. Lall

Electrical responses (ERG) to light flashes of various wavelengths and energies were obtained from the dorsal median ocellus and lateral compound eye of Limulus under dark and chromatic light adaptation. Spectral mechanisms were studied by analyzing (a) response waveforms, e.g. response area, rise, and fall times as functions of amplitude, (b) slopes of amplitude-energy functions, and (c) spectral sensitivity functions obtained by the criterion amplitude method. The data for a single spectral mechanism in the lateral eye are (a) response waveforms independent of wavelength, (b) same slope for response-energy functions at all wavelengths, (c) a spectral sensitivity function with a single maximum near 520 mµ, and (d) spectral sensitivity invariance in chromatic adaptation experiments. The data for two spectral mechanisms in the median ocellus are (a) two waveform characteristics depending on wavelength, (b) slopes of response-energy functions steeper for short than for long wavelengths, (c) two spectral sensitivity peaks (360 and 530–535 mµ) when dark-adapted, and (d) selective depression of either spectral sensitivity peak by appropriate chromatic adaptation. The ocellus is 200–320 times more sensitive to UV than to visible light. Both UV and green spectral sensitivity curves agree with Dartnall's nomogram. The hypothesis is favored that the ocellus contains two visual pigments each in a different type of receptor, rather than (a) various absorption bands of a single visual pigment, (b) single visual pigment and a chromatic mask, or (c) fluorescence. With long duration light stimuli a steady-state level followed the transient peak in the ERG from both types of eyes.


2001 ◽  
Vol 18 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Y. ZANA ◽  
D.F. VENTURA ◽  
J.M. de SOUZA ◽  
R.D. DeVOE

Recent physiological experiments support behavioral and morphological evidence for a fourth type of cone in the turtle retina, maximally sensitive in the ultraviolet (UV). This cone type has not yet been included in the models proposed for connectivity between cones and horizontal cells. In this study, we examined the inputs of UV, S, M, and L cones to horizontal cells. We used the high-resolution Dynamic Constant Response Method to measure the spectral sensitivity of horizontal cells without background light and after adaptation to UV, blue (B), green (G), and red (R) light. We concluded the following: (1) Tetrachromatic input to a Y/B horizontal cell was identified. The spectral-sensitivity curves of the cell in three of the adaptation conditions were well represented by L-, M-, and S-cone functions. Adaptation to blue light revealed a peak at 372 nm, the same wavelength location as that determined behaviorally in the turtle. A porphyropsin template could be closely fitted to the sensitivity band in that region, strong evidence for input from a UV cone. (2) The spectral-sensitivity functions of R/G horizontal cells were well represented by the L- and M-cone functions. There was no indication of UV- or S-cone inputs into these cells. (3) The spectral sensitivities of the monophasic horizontal cells were dominated by the L cone. However, the shape of the spectral-sensitivity function depended on the background wavelength, indicating secondary M-cone input. Connectivity models of the outer retina that predict input from all cone types are supported by the finding of tetrachromatic input into Y/B horizontal cells. In contrast, we did not find tetrachromatic input to R/G and monophasic horizontal cells. Chromatic adaptation revealed the spectral-sensitivity function of the turtle UV cone peaking at 372 nm.


1962 ◽  
Vol 45 (6) ◽  
pp. 1145-1161 ◽  
Author(s):  
G. B. Arden ◽  
Katharine Tansley

Using the electroretinogram as the criterion of retinal activity the flicker fusion frequency, course of dark adaptation, and spectral sensitivity of the pure cone retina of the diurnal gecko, Phelsuma inunguis, were investigated. Both the curve relating flicker fusion frequency to stimulus intensity and that relating the amplitude of the flicker response to stimulus intensity showed a break as the intensity was increased. The dark adaptation curve was that typical of cone retinae; there was no break, adaptation was relatively rapid, and there was a total increase of sensitivity of only about 3 log units. The spectral sensitivity curve showed two maxima, a major one at about 560 mµ and another at about 460 mµ. Chromatic adaptation with red and blue lights demonstrated the presence of two independent mechanisms. Although red adaptation could not have had a direct effect on the pigment responsible for the "blue" mechanism the sensitivity of this mechanism was depressed by red adaptation. The possible relationships of the two mechanisms are discussed.


2018 ◽  
Vol 18 (10) ◽  
pp. 877
Author(s):  
Daniel Garside ◽  
Lindsay MacDonald ◽  
Kees Teunissen

Author(s):  
Tamara M. Frank ◽  
Megan Porter ◽  
Thomas W. Cronin

Spectral sensitivity, visual pigment absorbance spectra and visual pigment opsin sequences were examined in younger shallow-living and older deep-living instars of the ontogenetically migrating lophogastrid Gnathophausia ingens. Spectral sensitivity measurements from dark adapted eyes and microspectrophotometric measurements of the rhabdom indicate maximal sensitivity for long wavelength (495–502 nm) light in both life history stages, but the younger instars are significantly more sensitive to near-ultraviolet light than the adults. Both life history stages express the same two opsins, indicating that there is no ontogenetic change in visual pigment complement between life history stages. Chromatic adaptation shifted the spectral sensitivity maximum to significantly longer wavelengths in both age-classes, but a distinct secondary short wavelength peak is visible only in the younger instars. These shifts appear to be due to the presence of migrating screening pigments, which are probably vestigial in the deep-living adults. Anomalies in the response waveforms under chromatic adaptation also apparently result from filtering by screening pigments, but via an unknown mechanism.


Sign in / Sign up

Export Citation Format

Share Document