A computational analysis and evaluation of the finite element method for a class of nuclear reactor configurations

1974 ◽  
Vol 4 (1) ◽  
pp. 97-117
Author(s):  
Arthur J. Lindeman ◽  
Gary K. Leaf ◽  
Hans G. Kaper
Author(s):  
Luboš Smolík ◽  
Jan Rendl ◽  
Jan Stifter ◽  
Milan Omasta

This paper aims at the modelling and investigation of unstable journal bearing with an emphasis on instabilities such as oil-whirl or further induced oil-whip. For this reason, a test rig for the investigation of these phenomena was built. Geometry, parameters and operating cases of the rig are described in detail in the presented paper. Computational analysis of the test rig was performed using two methods — the finite element method and a multi-body approach. The calculations of pressure distribution in journal bearings were also performed applying two methods — the finite difference method and the finite element method. The results of the analysis are properly introduced and discussed at the end of this paper. The results suggest that a yet unknown sub-synchronous component may appear under specific conditions. The component typically appears at frequency 0.9–0.98 of shaft speed and is likely caused by a location of a bore for oil supply.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2781-2792
Author(s):  
Shujian Tian ◽  
Guozhuang Li ◽  
Jun Liu ◽  
Haoyun Yuan ◽  
Xiaoyong Song ◽  
...  

The heat transfer performance of the spent fuel transport cask is inseparably related to the safety of the whole reprocessing system. In this study, we carried out the thermal analysis on the NAC-STC transport cask for AP1000 spent fuel assembly to evaluate the thermal performance of transport cask by the finite element method software ANSYS. A computational dynamics model was developed to study the temperature distribution inside the transport cask and on the surface of the cask. The effectiveness of the numerical calculation is demonstrated by comparing with the theoretical results. The results show that transport cask can reach steady-state during transportation, and the highest temperature in the case is 328?, which is below the maximum safety limit of 400?. Besides, the temperature of the fuel element baskets, sealing ring, photon shielding layer and neutron shielding layer in the cask are all within the safety limit.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document