Computational analysis of coned-face spiral groove gas seals using the finite element method

2005 ◽  
Vol 14 (2-3) ◽  
pp. 181-194
Author(s):  
Marco Tulio C. Faria
Author(s):  
Luboš Smolík ◽  
Jan Rendl ◽  
Jan Stifter ◽  
Milan Omasta

This paper aims at the modelling and investigation of unstable journal bearing with an emphasis on instabilities such as oil-whirl or further induced oil-whip. For this reason, a test rig for the investigation of these phenomena was built. Geometry, parameters and operating cases of the rig are described in detail in the presented paper. Computational analysis of the test rig was performed using two methods — the finite element method and a multi-body approach. The calculations of pressure distribution in journal bearings were also performed applying two methods — the finite difference method and the finite element method. The results of the analysis are properly introduced and discussed at the end of this paper. The results suggest that a yet unknown sub-synchronous component may appear under specific conditions. The component typically appears at frequency 0.9–0.98 of shaft speed and is likely caused by a location of a bore for oil supply.


Author(s):  
P Hernandez ◽  
R Boudet

The objective of this paper is to present a model of the behaviour of dynamical seals and the corresponding numerical results. These seals are used in the mechanism to realize partial sealing when the relative rotating speeds are too high for usual solutions. The studied seals mainly include two discs: one is attached to the shaft and the other to the body, the last one being pushed and the first being attached by springs. During operation, a gaseous film is created between the discs, preventing any contact. The control of the film thickness allows the leakage flow to be controlled. For the behaviour of such mechanisms, an analytical formulation of the problem is firstly presented. Then a geometrical and kinematical model having one degree of freedom is proposed to model the mechanism having two discs in relative rotation, one of which is spirally grooved. A dynamical model associated with the motion of the disc attached to the body has been developed and the mechanics of thin viscous films is used to study the behaviour of the gaseous film at the interface. Utilization of the finite element method in the mechanics of thin viscous films is introduced and a description of the elements used is presented. The influence of the groove's angle and the groove's depth is shown through numerical results concerning leakage mass flow through the mechanism and the loading capacity of the fluid film, as well as the coefficients of stiffness and damping associated with the dynamical model.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document