Solving linear finite element systems by normalized approximate matrix factorization semi-direct methods

1984 ◽  
Vol 43 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Elias A. Lipitakis ◽  
David J. Evans
1981 ◽  
Vol 27 (95) ◽  
pp. 19-24 ◽  
Author(s):  
Robert G. Oakberg

AbstractThe object of the research is to determine whether direct methods from the calculus of variations can provide convenient approximate solutions of complex problems in glacier mechanics. The Ritz technique is used to minimize an appropriate functional. Coordinate functions obtained from a finite-element model are combined with a coordinate function that is the solution of a related problem. The finite-element coordinate functions make localized adjustments to the related solution. Solutions of two sample problems are presented. An analysis of the closure of an intergranular vein in ice at the melting point is based upon a variational principle for velocities. An analysis of the flow of ice in a cylindrical channel is based upon a variational principle for stresses.


2012 ◽  
Vol 28 ◽  
pp. e15-e16
Author(s):  
L.H.A. Raposo ◽  
L.C.M. Dantas ◽  
T.A. Xavier ◽  
A.G. Pereira ◽  
A. Versluis ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 7-12 ◽  
Author(s):  
D. Huri

Non-linear finite element calculations are indispensable when important information of the material response under load of a rubber component is desired. Although the material characterization of a rubber component is a demanding engineering task, the changing contact range between the parts and the incompressibility behaviour of the rubber further increase the complexity of the investigations. In this paper the effects of the choice of the numerical material parameters (e.g. bulk modulus) are examined with regard to numerical stability, mesh density and calculation accuracy. As an example, a rubber spring is chosen where contact problem is also handled.


Sign in / Sign up

Export Citation Format

Share Document