A new method for the coupling of finite element and boundary element discretized subdomains of elastic bodies

1986 ◽  
Vol 54 (2) ◽  
pp. 161-185 ◽  
Author(s):  
Li Hong-Bao ◽  
Han Guo-Ming ◽  
Herbert A. Mang ◽  
Paul Torzicky
1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


2012 ◽  
Vol 479-481 ◽  
pp. 1709-1713
Author(s):  
Kai An Yu ◽  
Tao Yang ◽  
Chang Zhi Gong

In view of the problems of large stress and severe bearing heating in double-drum winch at present, this paper adopted a new method to enhance bearing capacity for double-drum winch by adding anti-pressure wheels between two drums. Finite element methods were used to analyze the strength of 4000kN-traction double-drum winches with anti-pressure wheels and without anti-pressure wheels respectively. The results of the analysis revealed that the stress of the cylinder bearing decreased from 264MPa to 167MPa. The new method by adding anti-pressure wheels had remarkably improved the endurance of the bearing. Therefore, the design method can be widely used in large-traction double-drum winch.


1991 ◽  
Vol 27 (5) ◽  
pp. 4085-4088 ◽  
Author(s):  
J.R. Brauer ◽  
B.E. MacNeal ◽  
L.A. Larkin ◽  
V.D. Overbye

2010 ◽  
Vol 24 (7) ◽  
pp. 2137-2159 ◽  
Author(s):  
J.L. Zapico-Valle ◽  
R. Alonso-Camblor ◽  
M.P. González-Martínez ◽  
M. García-Diéguez

Author(s):  
R. Becker ◽  
R. Koch ◽  
M. F. Modest ◽  
H.-J. Bauer

The present article introduces a new method to solve the radiative transfer equation (RTE). First, a finite element discretization of the solid angle dependence is derived, wherein the coefficients of the finite element approximation are functions of the spatial coordinates. The angular basis functions are defined according to finite element principles on subdivisions of the octahedron. In a second step, these spatially dependent coefficients are discretized by spatial finite elements. This approach is very attractive, since it provides a concise derivation for approximations of the angular dependence with an arbitrary number of angular nodes. In addition, the usage of high-order angular basis functions is straightforward. In the current paper the governing equations are first derived independently of the actual angular approximation. Then, the design principles for the angular mesh are discussed and the parameterization of the piecewise angular basis functions is derived. In the following, the method is applied to two-dimensional test cases which are commonly used for the validation of approximation methods of the RTE. The results reveal that the proposed method is a promising alternative to the well-established practices like the Discrete Ordinates Method (DOM) and provides highly accurate approximations. A test case known to exhibit the ray effect in the DOM verifies the ability of the new method to avoid ray effects.


Sign in / Sign up

Export Citation Format

Share Document