wave transmission
Recently Published Documents


TOTAL DOCUMENTS

1140
(FIVE YEARS 184)

H-INDEX

45
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8192
Author(s):  
Taeyoon Kim ◽  
Soonchul Kwon ◽  
Yongju Kwon

The adoption of low-crested and submerged structures (LCS) reduces the wave behind a structure, depending on the changes in the freeboard, and induces stable waves in the offshore. We aimed to estimate the wave transmission coefficient behind LCS structures to determine the feasible characteristics of wave mitigation. In addition, various empirical formulas based on regression analysis were proposed to quantitatively predict wave attenuation characteristics for field applications. However, inherent variability of wave attenuation causes the limitation of linear statistical approaches, such as linear regression analysis. Herein, to develop an optimization model for the hydrodynamic behavior of the LCS, we performed a comprehensive analysis of 10 types of machine learning models, which were compared and reviewed on the prediction accuracy with existing empirical formulas. We found that, among the 10 models, the gradient boosting model showed the highest prediction accuracy with MSE of 1.0 × 10−3, an index of agreement of 0.996, a scatter index of 0.065, and a correlation coefficient of 0.983, which indicates a performance improvement over the existing empirical formulas. In addition, based on a variable importance analysis using explainable artificial intelligence, we determined the significant importance of the input variable for the relative freeboard (RC/H0) and the relative freeboard to water depth ratio (RC/h), which confirms that the relative freeboard was the most dominant factor for influencing wave attenuation in the hydraulic behavior around the LCS. Thus, we concluded that the performance prediction method using a machine learning model can be applied to various predictive studies in the field of coastal engineering, deviating from existing empirical-based research.


2021 ◽  
Vol 277 ◽  
pp. 114582
Author(s):  
Leilei Yan ◽  
Zhiheng He ◽  
Wei Jiang ◽  
Linhao Cheng ◽  
Hua Ma ◽  
...  

2021 ◽  
Vol 26 (4) ◽  
pp. 344-349
Author(s):  
A. V. Gribovsky ◽  

Purpose: Investigation of the electrodynamic properties of a Fabry-Perot metaresonator formed by two parallel perfectly conducting, two-dimensionally periodic, two-element screens of finite thickness with rectangular holes. The resonator is excited by a plane linearly polarized electromagnetic wave. The basic cell of each of the screens used as the metaresonator mirrors contains two lengths of rectangular waveguides of different transverse sections. Design/methodology/approach: An operator method for solving the 3D problems of electromagnetic wave diffraction by multielement two-dimensionally periodic structures is used in the study. The computation algorithm uses the partial domain technique and the method of generalized scattering matrices. Findings: As follows from the results of the numerical modeling made, the magnitude of the plane wave reflected from the metaresonator turns to zero at fixed frequencies lying below the cutoff frequencies for the rectangular waveguide sections embedded in the resonator mirrors. The effect of the total electromagnetic wave transmission through the metaresonator at the first lower frequency is characterized by a strong localization of the electromagnetic field in the resonator volume. The reason is excitation of the metaresonator by the exponentially descending field penetrating inside the resonator through the evanescent holes at the resonance frequency. The second low-frequency resonance of the total electromagnetic wave transmission through the metaresonator is associated with the trapped-mode resonance, which is observed in multielement two-dimensionally periodic structures. This case is characterized by a strong localization of the electromagnetic field from both sides near the metaresonator mirror surfaces. Conclusions: The unique electrodynamic properties of the metaresonator can find application in the devices for measuring the electrophysical parameters of composite materials with high losses. The effect of strong localization of the electromagnetic field both in the resonator volume and near the mirror surfaces can be used for monitoring the gaseous substances in crowded places. Key words: two-dimensionally periodic screen; rectangular waveguide; Fabry-Perot metaresonator; reflection factor; evanescent waveguide; trapped-mode resonance


2021 ◽  
Vol 130 (19) ◽  
pp. 194902
Author(s):  
Tobias Schaich ◽  
Daniel Molnar ◽  
Anas Al Rawi ◽  
Mike Payne

Author(s):  
Pinaki Pal

The world is facing multi-wave transmission of COVID-19 pandemics, and investigations are rigorously carried out on modeling the dynamics of the pandemic. Multi-wave transmission during infectious disease epidemics is a big challenge to public health. Here we introduce a simple mathematical model, the double sigmoidal-Boltzmann equation (DSBE), for analyzing the multi-wave Covid-19 spread in Iceland in terms of the number of cumulative cases. Simulation results and the main parameters that characterize multi waves are derived, yielding important information about the behavior of the multi-wave pandemics over time. The result of the current examination reveals the effectiveness and efficacy of DSBE for exploring the Covid 19 dynamics in Iceland and can be employed to examine the pandemic situation in different countries undergoing multi-waves.


Sign in / Sign up

Export Citation Format

Share Document