noise transfer function
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8234
Author(s):  
Igor Rutkowski ◽  
Krzysztof Czuba

Quantifying frequency converters’ residual phase noise is essential in various applications, including radar systems, high-speed digital communication, or particle accelerators. Multi-input signal source analyzers can perform such measurements out of the box, but the high cost limits their accessibility. Based on an analysis of phase noise transmission theory and the capabilities of popular instrumentation, we propose a technique extending the functionality of single-input devices. The method supplements absolute noise measurements with estimates of the phase noise transfer function (also called the jitter transfer function), allowing the calculation of residual noise. The details of the hardware setup used for the method verification are presented. The injection of single-tone and pseudo-random modulations to the test signal is examined. Optional employment of a spectrum analyzer can reduce the time and number of data needed for characterization. A wideband synthesizer with an integrated voltage-controlled oscillator was investigated using the method. The estimated transfer function matches a white-box model based on synthesizer’s structure and values of loop components. The first results confirm the validity of the proposed technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Khaoula Ait Belaid ◽  
H. Belahrach ◽  
H. Ayad

In this paper, two intelligent methods which are GAs and PSO are used to model noise coupling in a Three-Dimensional Integrated Circuit (3D-IC) based on TSVs. These techniques are rarely used in this type of structure. They allow computing all the elements of the noise model, which helps to estimate the noise transfer function in the frequency and time domain in 3D complicated systems. Noise models include TSVs, active circuits, and substrate, which make them difficult to model and to estimate. Indeed, the proposed approaches based on GA and PSO are robust and powerful. To validate the method, comparisons among the results found by GA, PSO, measurements, and the 3D-TLM method, which presents an analytical technique, are made. According to the obtained simulation and experimental results, it is found that the proposed methods are valid, efficient, precise, and robust.


2020 ◽  
pp. 2150131
Author(s):  
Changchun Dong ◽  
Yanbo Chen ◽  
Zhanpeng Jiang ◽  
Mingyuan Ren ◽  
Xuebin Lu ◽  
...  

This paper presents a sigma-delta interface for fluxgate sensor based on a single-loop high-order modulation. A feedforward summation loop structure can reduce the linearity overload in integrators and the swing of integration signals. A Local feedback branch is proposed to realize the zero of noise transfer function (NTF) optimization and enhance noise shaping performance within signal band. The interface is fabricated in a standard 0.5 [Formula: see text]m CMOS process and the active circuit area is about 13 mm2. The chip consumes 120 mW from a 10 V supply with a sampling clock of 250 k Hz. The average noise floor of the digital fluxgate is about −115 dBV/Hz[Formula: see text] over a 100 Hz bandwidth.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5369
Author(s):  
Kui Liu ◽  
Fenglei Zhang ◽  
Zongyang Li ◽  
Xiaohua Feng ◽  
Ke Li ◽  
...  

Large-scale laser gyroscopes have found important applications in Earth sciences due to their self-sufficient property of measurement of the Earth’s rotation without any external references. In order to extend the relative rotation measurement accuracy to a better level so that it can be used for the determination of the Earth orientation parameters (EOP), we investigate the limitations in a passive resonant laser gyroscope (PRG) developed at Huazhong University of Science and Technology (HUST) to pave the way for future development. We identify the noise sources from the derived noise transfer function of the PRG. In the frequency range below 10−2Hz, the contribution of free-spectral-range (FSR) variation is the dominant limitation, which comes from the drift of the ring cavity length. In the 10−2 to 103Hz frequency range, the limitation is due to the noises of the frequency discrimination system, which mainly comes from the residual amplitude modulation (RAM) in the frequency range below 2 Hz. In addition, the noise contributed by the Mach–Zehnder-type beam combiner is also noticeable in the 0.01 to 2 Hz frequency range. Finally, possible schemes for future improvement are also discussed.


Author(s):  
Mahmud Abdoli ◽  
Esmaeil Najafi Aghdam

Developing an analog-to-digital converter (ADC) based on the time-interleaved delta–sigma modulator (TIDSM) is an appropriate technique to attain high-speed ADCs. TIDSMs can be successfully accomplished with the aid of developing the block digital filtering (BDF) method. In this approach, [Formula: see text] mutually cross-connection delta–sigma modulators are used, whereby each one of them operates at a sampling rate of [Formula: see text], leading to an effective sampling rate of [Formula: see text]. In this study, a novel structure is proposed based on the Noise Coupled time-interleaved delta–sigma modulator (NC-TIDSM) with reduced hardware complexity. This structure not only increases the overall noise transfer function (NTF) order, but also reduces the hardware element counts. The simulation results demonstrate that the SNDRs of the first-order two-channel and four-channel NC-TIDSM with reduced hardware are 13 and 15 dB better than those of their BDF technique counterparts; also, the SNDR of the second-order two-channel NC-TIDSM with reduced hardware is 8 dB better than that of their BDF technique counterpart; also, the hardware element quantities are reduced dramatically. Moreover, some practical challenges such as the finite op-amp’s gain and mismatching effects that directly affect the circuit implementation of the proposed structure have been described. Furthermore, the hardware complexity of the proposed structures is reduced considerably in comparison to that of the BDF technique with the NC-TIDSM structure.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yafeng Ren ◽  
Shan Chang ◽  
Geng Liu ◽  
Haiwei Wang ◽  
Xueliang Bao

To investigate the gearbox radiation noise properties under various rotational speeds, a noise prediction method based on impedance model and noise transfer function (NTF) is proposed. One only needs to extract the NTF of the housing once rapid gearbox noise prediction under different working conditions is realized. Taking a flexible supported gearbox as a research object, the external excitation of the housing (the bearing excitation load and isolator excitation load) is calculated through a gear-housing-foundation-coupled impedance model, and the noise transfer function is simulated through the vibroacoustic-coupled boundary element model; then the radiation noise is obtained. Based on this model, the noise transfer analysis of the housing is carried out, different excitation components and NTF components are compared, and the contributions of different excitation components to noise are compared. Results show that the radiation noise of gearbox is mainly excited by the high-speed bearing, while the low-speed bearing and isolator have little influence on noise. At low speed, vertical force, axial force, and moment excitation of bearings all contribute to the radiation noise while at high speed, the gearbox radiation noise is mainly generated by vertical excitation force of bearings.


2020 ◽  
Vol 33 (1) ◽  
pp. 15-26
Author(s):  
Dmitry Osipov ◽  
Aleksandr Gusev ◽  
Vitaly Shumikhin ◽  
Steffen Paul

The successive approximation register (SAR) analog-to-digital converter (ADC) is currently the most popular type of ADC architecture, owing to its power efficiency. They are also used in multichannel systems, where power efficiency is of high importance because of the large number of simultaneously working channels. However, the SAR ADC architecture is not the most area efficient. In SAR ADCs, the binary weighted capacitive digital-to-analog converter (DAC) is used, which means that one additional bit of resolution costs double the increase of area. Oversampling and noise shaping are methods that allow an increase in resolution without an increase of area. In this paper we present the new SAR ADC architectures with a noise shaping. A first-order noise transfer function (NTF) with zero located nearly at one can be achieved. We propose two modifications of the architecture: with zero-only NTF and with the NTF with additional pole. The additional pole theoretically increases the efficiency of noise shaping to further 3 dB. The architectures were applied to the design of SAR ADCs in a 65 nm complementary metal-oxide semiconductor (CMOS) with OSR equal to 10. A 6-bit capacitive DAC was used. The proposed architectures provide nearly 4 additional bits in ENOB. The equalent input bandwitdth is equal to 200 kHz with the sampling rate equal to 4 MS/s.


Sign in / Sign up

Export Citation Format

Share Document