Methods for combination of finite element and singular integral equation methods

1987 ◽  
Vol 60 (1) ◽  
pp. 45-56 ◽  
Author(s):  
George Tsamasphyros
2017 ◽  
Vol 24 (2) ◽  
pp. 448-464 ◽  
Author(s):  
Jie Yan ◽  
Changwen Mi ◽  
Zhixin Liu

In this work, we examine the receding contact between a homogeneous elastic layer and a half-plane substrate reinforced by a functionally graded coating. The material properties of the coating are allowed to vary exponentially along its thickness. A distributed traction load applied over a finite segment of the layer surface presses the layer and the coated substrate against each other. It is further assumed that the receding contact between the layer and the coated substrate is frictionless. In the absence of body forces, Fourier integral transforms are used to convert the governing equations and boundary conditions of the plane receding contact problem into a singular integral equation with the contact pressure and contact size as unknowns. Gauss–Chebyshev quadrature is subsequently employed to discretize both the singular integral equation and the force equilibrium condition at the contact interface. An iterative algorithm based on the method of steepest descent has been proposed to numerically solve the system of algebraic equations, which is linear for the contact pressure but nonlinear for the contact size. Extensive case studies are performed with respect to the coating inhomogeneity parameter, geometric parameters, material properties, and the extent of the indentation load. As a result of the indentation, the elastic layer remains in contact with the coated substrate over only a finite interval. Exterior to this region, the layer and the coated substrate lose contact. Nonetheless, the receding contact size is always larger than that of the indentation traction. To validate the theoretical solution, we have also developed a finite-element model to solve the same receding contact problem. Numerical results of finite-element modeling and theoretical development are compared in detail for a number of parametric studies and are found to agree very well with each other.


2019 ◽  
Vol 54 (4) ◽  
pp. 254-275
Author(s):  
Korhan Babacan Yilmaz ◽  
Isa Comez ◽  
Mehmet Ali Güler ◽  
Bora Yildirim

With the advent of new functional and intelligent non-conventional materials, understanding the behavior of these materials in different contact conditions over the conventional materials is one of the most crucial aspects in early design process for coated systems. Therefore, the sliding contact problem for a functionally graded orthotropic coating–substrate system and a rigid cylindrical punch is considered in this article to study the aforementioned aspects. The functionally graded orthotropic coating is modeled to be bonded to an isotropic substrate of finite thickness and is loaded by a sliding rigid cylindrical punch under plane strain conditions. For the material orthotropy, five different real orthotropic materials are utilized and the stiffness coefficients of each principal direction are graded separately. Navier’s equations are converted to ordinary differential equations using the Fourier integral transformation technique. Then, the algebraic equations are solved and the problem is cast into a singular integral equation. A parametric finite element analysis based on augmented contact method is also conducted. The normalized surface stress distributions and the normalized contact boundaries obtained from finite element analysis are validated with the results obtained from singular integral equation approach. The results of this study may be helpful for engineers in design and optimization of the characteristics of non-conventional coatings that are used as thermal or structural barriers and wear-resistant surfaces in engineering applications.


2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


Sign in / Sign up

Export Citation Format

Share Document