A kinematically exact space finite strain beam model — finite element formulation by generalized virtual work principle

1995 ◽  
Vol 120 (1-2) ◽  
pp. 131-161 ◽  
Author(s):  
G. Jelenić ◽  
M. Saje
2007 ◽  
Vol 2007 ◽  
pp. 1-12
Author(s):  
M. Eröz ◽  
A. Yildiz

The three-dimensional linearized theory of elastodynamics mathematical formulation of the forced vibration of a prestretched plate resting on a rigid half-plane is given. The variational formulation of corresponding boundary-value problem is constructed. The first variational of the functional in the variational statement is equated to zero. In the framework of the virtual work principle, it is proved that appropriate equations and boundary conditions are derived. Using these conditions, finite element formulation of the prestretched plate is done. The numerical results obtained coincide with the ones given by Ufly and in 1963 for the static loading case.


Author(s):  
Enrico Babilio ◽  
Stefano Lenci

The present contribution reports some preliminary results obtained applying a simple finite element formulation, developed for discretizing the partial differential equations of motion of a novel beam model. The theoretical model we are dealing with is geometrically exact, with some peculiarities in comparison with other existing models. In order to study its behavior, some numerical investigations have already been performed through finite difference schemes and other methods and are reported in previous contributions. Those computations have enlightened that the model under analysis turns out to be quite hard to handle numerically, especially in dynamics. Hence, we developed ad hoc the total-lagrangian finite-element formulation we report here. The main differences between the theoretical model and its numerical formulation rely on the fact that in the latter the absolute value of the shear angle is assumed to remain much smaller than unity, and strains are piecewise constant along the beam. The first assumption, which actually simplifies equations, has been taken on the basis of results from previous integrations, mainly through finite difference schemes, which clearly showed that, while other strains can achieve large values in their range of admissibility, shear angle actually remains small. The second assumption led us to define a two-nodes constant-strain finite element, with a fast convergence, in terms of number of elements versus solution accuracy. Although, at the present stage of this ongoing research, we have only early results from finite elements, they appear encouraging and start to shed new light on the behavior of the beam model under analysis.


Author(s):  
Saher Attia ◽  
Magdi Mohareb ◽  
Michael Martens ◽  
Nader Yoosef Ghodsi ◽  
Yong Li ◽  
...  

Abstract The paper presents a new and simple geometrically nonlinear finite element formulation to simulate the structural response of straight pipes under in-plane loading and/or internal pressure. The formulation employs the Green-Lagrange strain tensor to capture finite deformation-small strain effects. Additionally, the First Piola-Kirchhoff stress tensor and Saint Venant-Kirchhoff constitutive model are adopted within the principle of virtual work framework in conjunction with a total Lagrangian approach. The formulation is applied for a cantilever beam under three loading conditions. Results are in good agreement with shell models in ABAQUS. Although the solution is based on a single element, the formulation provides reasonable displacement and stress predictions.


Author(s):  
Ashkan Afnani ◽  
Vida Niki ◽  
R. Emre Erkmen

In this study, a finite element formulation is developed for the elastic analysis of thin-walled curved beams. Using a second-order rotation tensor, the strains of the deformed configuration are calculated in terms of the displacement values and the initial curvature. The principle of virtual work is then used to obtain the nonlinear equilibrium equations, based on which a finite element beam formulation is developed. The accuracy of the method is confirmed through comparisons with test results and shell-type finite element formulations and other curved beam formulations from the literature. It is also shown that the results of the developed formulation are very accurate for cases where initial curvature is very large.


1997 ◽  
Vol 119 (3) ◽  
pp. 273-278 ◽  
Author(s):  
A. R. Johnson ◽  
A. Tessler ◽  
M. Dambach

A viscoelastic higher-order thick beam finite element formulation is extended to include elastodynamic deformations. The material constitutive law is a special differential form of the Maxwell solid, which employs viscous strains as internal variables to determine the viscous stresses. The total time-dependent stress is the superposition of its elastic and viscous components. In the constitutive model, the elastic strains and the conjugate viscous strains are coupled through a system of first-order ordinary differential equations. The use of the internal strain variables allows for a convenient finite element formulation. The elastodynamic equations of motion are derived from the virtual work principle. Computational examples are carried out for a thick orthotropic cantilevered beam. Relaxation, creep, relaxation followed by free damped vibrations, and damping related modal interactions are discussed.


Sign in / Sign up

Export Citation Format

Share Document