large rotation
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 36)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 933 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Shiyi Chen

The analogy between rotating shear flow and thermal convection suggests the existence of plumes, inertial waves and plume currents in plane Poiseuille flow under spanwise rotation. The existence of these flow structures is examined with the results of three-dimensional and two-dimensional three-component direct numerical simulations. The dynamics of plumes near the unstable side is embodied in a truncated exponential distribution of turbulent fluctuations. For large rotation numbers, inertial waves are identified near the stable side, and these can be used to explain the abnormal flow statistics, such as the large root-mean-square of the streamwise velocity fluctuation and the nearly negligible Reynolds shear stress. For small or medium rotation numbers, plumes generated from the unstable side form large-scale plume currents and the patterns of the plume currents show different capabilities in scalar transport.


2021 ◽  
Vol 923 (1) ◽  
pp. L17
Author(s):  
Z. Y. Zhao ◽  
F. Y. Wang

Abstract Recently, FRB 190520B, which has the largest extragalactic dispersion measure (DM), was discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The DM excess over the intergalactic medium and Galactic contributions is estimated as ∼900 pc cm−3, which is nearly ten times higher than that of other fast-radio-burst (FRB) host galaxies. The DM decreases with the rate ∼0.1 pc cm−3 per day. It is the second FRB associated with a compact persistent radio source (PRS). The rotation measure (RM) is found to be larger than 1.8 × 105rad m−2. In this Letter, we argue that FRB 190520B is powered by a young magentar formed by core collapse of massive stars, embedded in a composite of a magnetar wind nebula (MWN) and supernova remnant (SNR). The energy injection of the magnetar drives the MWN and SN ejecta to evolve together and the PRS is generated by the synchrotron radiation of the MWN. The magnetar has an interior magnetic field B int ∼ (2–4) × 1016 G and an age t age ∼ 14–22 yr. The dense SN ejecta and the shocked shell contribute a large fraction of the observed DM and RM. Our model can naturally and simultaneously explain the luminous PRS, decreasing DM, and extreme RM of FRB 190520B.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3066
Author(s):  
Amin Alibakhshi ◽  
Shahriar Dastjerdi ◽  
Mohammad Malikan ◽  
Victor A. Eremeyev

In recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This paper attempts to explore the free and forced vibrations of a micro/nanobeam made of a hyperelastic material incorporating strain-stiffening, size effect, and moderate rotation. The beam is modelled based on the Euler–Bernoulli beam theory, and strains are obtained via an extended von Kármán theory. Boundary conditions and governing equations are derived by way of Hamilton’s principle. The multiple scales method is applied to obtain the frequency response equation, and Hamilton’s technique is utilized to obtain the free undamped nonlinear frequency. The influence of important system parameters such as the stiffening parameter, damping coefficient, length of the beam, length-scale parameter, and forcing amplitude on the frequency response, force response, and nonlinear frequency is analyzed. Results show that the hyperelastic microbeam shows a nonlinear hardening behavior, which this type of nonlinearity gets stronger by increasing the strain-stiffening effect. Conversely, as the strain-stiffening effect is decreased, the nonlinear frequency is decreased accordingly. The evidence from this study suggests that incorporating strain-stiffening in hyperelastic beams could improve their vibrational performance. The model proposed in this paper is mathematically simple and can be utilized for other kinds of micro/nanobeams with different boundary conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2269
Author(s):  
Xiao-Ting He ◽  
Xue Li ◽  
Bin-Bin Shi ◽  
Jun-Yi Sun

The closed-form solution of circular membranes subjected to gas pressure loading plays an extremely important role in technical applications such as characterization of mechanical properties for freestanding thin films or thin-film/substrate systems based on pressured bulge or blister tests. However, the only two relevant closed-form solutions available in the literature are suitable only for the case where the rotation angle of membrane is relatively small, because they are derived with the small-rotation-angle assumption of membrane, that is, the rotation angle θ of membrane is assumed to be small so that “sinθ = 1/(1 + 1/tan2θ)1/2” can be approximated by “sinθ = tanθ”. Therefore, the two closed-form solutions with small-rotation-angle assumption cannot meet the requirements of these technical applications. Such a bottleneck to these technical applications is solved in this study, and a new and more refined closed-form solution without small-rotation-angle assumption is given in power series form, which is derived with “sinθ = 1/(1 + 1/tan2θ)1/2”, rather than “sinθ = tanθ”, thus being suitable for the case where the rotation angle of membrane is relatively large. This closed-form solution without small-rotation-angle assumption can naturally satisfy the remaining unused boundary condition, and numerically shows satisfactory convergence, agrees well with the closed-form solution with small-rotation-angle assumption for lightly loaded membranes with small rotation angles, and diverges distinctly for heavily loaded membranes with large rotation angles. The confirmatory experiment conducted shows that the closed-form solution without small-rotation-angle assumption is reliable and has a satisfactory calculation accuracy in comparison with the closed-form solution with small-rotation-angle assumption, particularly for heavily loaded membranes with large rotation angles.


Author(s):  
Konstantinos Manikas ◽  
Markus Hütter ◽  
Patrick D. Anderson

AbstractThe effect of time-dependent external fields on the structures formed by particles with induced dipoles dispersed in a viscous fluid is investigated by means of Brownian Dynamics simulations. The physical effects accounted for are thermal fluctuations, dipole-dipole and excluded volume interactions. The emerging structures are characterised in terms of particle clusters (orientation, size, anisotropy and percolation) and network structure. The strength of the external field is increased in one direction and then kept constant for a certain amount of time, with the structure formation being influenced by the slope of the field-strength increase. This effect can be partially rationalized by inhomogeneous time re-scaling with respect to the field strength, however, the presence of thermal fluctuations makes the scaling at low field strength inappropriate. After the re-scaling, one can observe that the lower the slope of the field increase, the more network-like and the thicker the structure is. In the second part of the study the field is also rotated instantaneously by a certain angle, and the effect of this transition on the structure is studied. For small rotation angles ($$\theta \le 20^{{\circ }}$$ θ ≤ 20 ∘ ) the clusters rotate but stay largely intact, while for large rotation angles ($$\theta \ge 80^{{\circ }}$$ θ ≥ 80 ∘ ) the structure disintegrates and then reforms, due to the nature of the interactions (parallel dipoles with perpendicular inter-particle vector repel each other). For intermediate angles ($$20<\theta <80^{{\circ }}$$ 20 < θ < 80 ∘ ), it seems that, during rotation, the structure is altered towards a more network-like state, as a result of cluster fusion (larger clusters). The details provided in this paper concern an electric field, however, all results can be projected into the case of a magnetic field and paramagnetic particles.


2021 ◽  
Author(s):  
Quan Shi ◽  
Joseph M. Gattas

Abstract The structural and mechanical behaviours of most origami-inspired or folded structures is strongly dependent upon the mechanical behaviours of their constituent crease lines. Characterisation of the rotational behaviours of the steel hinges is therefore a critical step in the analysis of origami-inspired steel structures. This paper will present a numerical modelling approach for simulating the rotational response of digitally-fabricated steel hinges, over a large rotation range from 0° up to 170°. Numerical response predictions are verified against published experimental results, over a range of sheet thicknesses and fold line parameters. Models are then used to give insight into observed thick-panel clash behaviours and fold-line localised strap mechanics. The developed numerical modelling procedure provides a convenient analysis method for rapid prediction of steel hinge behaviour.


2021 ◽  
Vol 11 (15) ◽  
pp. 6872
Author(s):  
Chien-Sheng Liu ◽  
Yi-Hsuan Lin ◽  
Chiu-Nung Yeh

In keeping with consumers’ preferences for electromagnetic motors of ever smaller power consumption, it is necessary to improve the power efficiency of the electromagnetic motors used in unmanned aerial vehicles and robots without sacrificing their performance. Three-degree-of-freedom (3-DOF) spherical motors have been developed for these applications. Accordingly, this study modifies the 3-DOF spherical motor proposed by Hirata’s group in a previous study (Heya, A.; Hirata, K.; Niguchi, N., Dynamic modeling and control of three-degree-of-freedom electromagnetic actuator for image stabilization, IEEE Transactions on Magnetics 2018, 54, 8207905.) to accomplish a 3-DOF spherical motor for camera module with higher torque output in the large rotation angle. The main contribution of this study is to improve the static torque in the X- and Y-axes with an improved electromagnetic structure and a particular controlling strategy. In the structural design, eight symmetrical coils with specific coil combination are used instead of conventional four symmetrical coils. In this study, the development of the proposed 3-DOF spherical motor was constructed and verified by using a 3D finite-element method (3D FEM). The simulation results show that the proposed 3-DOF spherical motor has higher torque output in the large rotation angle when compared to the original 3-DOF spherical motor.


2021 ◽  
Author(s):  
Han Eng Low ◽  
Fangyuan Zhu ◽  
Henning Mohr ◽  
Phillip Watson ◽  
Carl Erbrich ◽  
...  

Abstract Single (or mono) suction buckets have been put forward by others as possible offshore wind turbine (OWT) foundations. This paper presents a series of centrifuge model tests conducted in dense sand to investigate their monotonic response for a range of drainage conditions. The results from the centrifuge tests suggest that the mono-bucket rotational response at large rotation in dense sand is dependent on drainage conditions but does not seem to be affected by the contact condition between the bucket invert and the seabed. A final comparison between results from an equivalent set of uplift tests suggests, however, that multi-bucket foundation systems are likely to be more efficient foundation solutions, although suggestions are made which might improve mono-bucket foundation response.


2021 ◽  
Author(s):  
Hossein Ghorbani ◽  
Ramin Vatankhah ◽  
Mehrdad Farid

Abstract In this paper, the motion of a smart rigid-flexible satellite by considering large deformations for its flexible appendages in general planar motion is modeled. Therefore, the satellite can experience translational and rotational motions also its flexible appendages can vibrate arbitrarily in the motion plane. Two control forces perpendicular to each other and one control torque are responsible for controlling the motion of the satellite on the desired trajectories. Also, piezoelectric actuators and sensors suppress vibrations and estimate the transverse displacement of the satellite's flexible appendages, respectively. The coupled ordinary-partial differential equations of motion, equations of the sensors, and boundary conditions of the system are obtained using extended Hamilton's principle. Then, these equations are discretized using the Galerkin method. The discretized equations of motion are a set of coupled nonlinear ordinary differential equations due to the consideration of the large rotation angle of the satellite and large deformations for its flexible appendages. Adaptive super-twisting global nonlinear sliding mode controller is designed to satisfy the control objectives including position and attitude control, as well as suppressing vibrations of the flexible appendages in the presence of uncertainties and external disturbances. Eventually, numerical simulations are presented to illustrate the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document