Volume 6: 14th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
Latest Publications


TOTAL DOCUMENTS

74
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851838

Author(s):  
Qicheng Zha ◽  
Xiaoting Rui ◽  
Feifei Liu ◽  
Hailong Yu ◽  
Jianshu Zhang

Transfer Matrix Method for Multibody Systems (MSTMM) has the advantages of no need to establish the global system dynamics equations, low order of the system matrix, high programming, and fast calculation speed compared to the ordinary dynamics methods. In this paper, the topological graph of the dynamics model, transfer equations, transfer matrix of overall system and the simulation program of dynamics of the self-propelled artillery system are established by using the new version of the transfer matrix method for multibody systems and the automatic deduction theorem of overall transfer equation of systems. Realize the rapid calculation of the deviation of the pitch angle and the revolution angles of the turret versus time in the self-propelled artillery. It provides a theoretical basis and simulation means for the dynamics analysis of the self-propelled artillery.


Author(s):  
Soheil Fatehiboroujeni ◽  
Arvind Gopinath ◽  
Sachin Goyal

Flagella and cilia are examples of actively oscillating, whiplike biological filaments that are crucial to processes as diverse as locomotion, mucus clearance, embryogenesis and cell motility. Elastic driven rod-like filaments subjected to compressive follower forces provide a way to mimic oscillatory beating in synthetic settings. In the continuum limit, this spatiotemporal response is an emergent phenomenon resulting from the interplay between the structural elastic instability of the slender rods subjected to the non-conservative follower forces, geometric constraints that control the onset of this instability, and viscous dissipation due to fluid drag by ambient media. In this paper, we use an elastic rod model to characterize beating frequencies, the critical follower forces and the non-linear rod shapes, for pre-stressed, clamped rods subject to two types of fluid drag forces, namely, linear Stokes drag and non-linear Morrison drag. We find that the critical follower force depends strongly on the initial slack and weakly on the nature of the drag force. The emergent frequencies however, depend strongly on both the extent of pre-stress as well as the nature of the fluid drag.


Author(s):  
Rajiv Kumar Vashisht ◽  
Qingjin Peng

Rotating beams are quite common in rotating machinery e.g. fans of compressors in an airplane. This paper presents the experimental, hybrid, structural vibration control of flexible structures to enhance the vibration behavior of rotating beams. Smart materials have been used as sensors as well as actuators. Passive constrained layer damping (PCLD) treatment is combined with stressed layer damping technique to enhance the damping characteristics of the flexible beam. To further enhance the damping parameters, a closed form robust feedback controller is applied to reduce the broadband structural vibrations of the rotating beam. The feed forward controller is designed by combing with the feedback controller using a pattern search based optimization technique. The hybrid controller enhances the performance of the closed loop system. Experiments have been conducted to validate the effectiveness of the presented technique.


Author(s):  
Abhishek Chatterjee ◽  
Alan Bowling

This work presents a new approach for resolving the unique invariant slip direction at Stick-Slip Transition during impact. The solution method presented in this work is applicable to both single-point and multi-point impact problems. The proposed method utilizes rigid body constraints to resolve the impact forces at all collision points in terms of a single independent impact forces parameter. This work also uses an energetic coefficient of restitution to terminate impact events, thereby yielding energetically consistent post-impact behavior.


Author(s):  
Muhammad Faisal Javed Butt ◽  
Michael P. Paidoussis ◽  
Meyer Nahon

Pipes aspirating fluid have applications in the filling and recovery processes for underground caverns — large subterranean cavities used to store hydrocarbons, such as natural gas and oil. This paper deals with the dynamics of a vertical cantilevered flexible pipe, immersed in fluid. Fluid is aspirated from its bottom free end up to the fixed upper end. In this study, the working fluid is assumed to be water. An existing analytical model is used to predict the dynamical behaviour of the aspirating pipe. This model is then discretized with Galerkin’s method, using Euler-Bernoulli eigen-functions for cantilevered beam as comparison functions. Once solved, the model results show a unique kind of flutter comprising three regions, denoted regions 01–03. These regions are delineated by two critical flow velocities, Ucf1 and Ucf2. In addition, two frequencies of oscillation, f1 and f2, are found to characterize the aforementioned flutter. The dominant frequency of oscillation changes from f1 to f2 as the flow velocity is increased from approximately 3 to 6 m/s — a frequency exchange phenomenon observed and reported here for the first time for this system. The analytical/numerical study was followed by a corresponding experimental study. Experiments were performed on a flexible (Silastic) pipe that was completely submerged in water. The behaviour observed experimentally was similar to the numerical study, as the aspirating fluid velocity was increased from zero to 7 m/s.


Author(s):  
Yingdan Wu ◽  
Michael Varenberg ◽  
Michael J. Leamy

We study the dynamic behavior of a belt-drive system to explore the effect of operating conditions and system moment of inertia on the generation of waves of detachment (i.e., Schallamach waves) at the belt-pulley interface. A self-excitation phenomenon is reported in which frictional fluctuations serve as harmonic forcing of the pulley, leading to angular velocity oscillations which grow in time. This behavior depends strongly on operating conditions (torque transmitted and pulley speed) and system inertia, and differs between the driver and driven pulleys. A larger net torque applied to the pulley generally yields more remarkable stick-slip oscillations with higher amplitude and lower frequency. Higher driving speeds accelerate the occurrence of stick-slip motion, but have little influence on the oscillation amplitude. Contrary to our expectations, the introduction of flywheels to increase system inertia amplified the frictional disturbances, and hence the pulley oscillations. This does, however, suggest a way of facilitating their study, which may be useful in follow-on research.


Author(s):  
Grzegorz Orzechowski ◽  
Aki M. Mikkola ◽  
José L. Escalona

In this paper, co-simulation procedure for a multibody system that includes reeving mechanism will be introduced. The multibody system under investigation is assumed to have a set of rigid bodies connected by flexible wire ropes using a set of sheaves and reels. In the co-simulation procedure, a wire rope is described using a combination of absolute position coordinates, relative transverse deformation coordinates and longitudinal material coordinates. Accordingly, each wire rope span is modeled using a single two-noded element by employing an Arbitrary Lagrangian-Eulerian approach.


Author(s):  
Bendegúz Dezső Bak ◽  
Tamás Kalmár-Nagy

Energy transfer is present in many natural and engineering systems which include different scales. It is important to study the energy cascade (which refers to the energy transfer among the different scales) of such systems. A well-known example is turbulent flow in which the kinetic energy of large vortices is transferred to smaller ones. Below a threshold vortex scale the energy is dissipated due to viscous friction. We introduce a mechanistic model of turbulence which consists of masses connected by springs arranged in a binary tree structure. To represent the various scales, the masses are gradually decreased in lower levels. The bottom level of the model contains dampers to provide dissipation. We define the energy spectrum of the model as the fraction of the total energy stored in each level. A simple method is provided to calculate this spectrum in the asymptotic limit, and the spectra of systems having different stiffness distributions are calculated. We find the stiffness distribution for which the energy spectrum has the same scaling exponent (−5/3) as the Kolmogorov spectrum of 3D homogeneous, isotropic turbulence.


Author(s):  
Alfonso Callejo ◽  
Valentin Sonneville ◽  
Olivier A. Bauchau

The combination of analysis and optimization methods in mechanical engineering, also known as design optimization, has great potential in product development. Robust sensitivity analyses that provide reliable and efficient objective function gradients play a key role in design optimization. This paper presents a discrete adjoint method for the sensitivity analysis of flexible mechanical systems. The ultimate goal is to be able to relate the physical properties of beam cross-sections to the dynamic behavior of the system, which is key to design realistic flexible elements. The underlying flexible multibody formulation is one that supports large-amplitude motion, beams with sophisticated composite cross-sections, and kinematic joints. A summary of the kinematic and dynamic foundations of the forward equations is presented first. Then, a discrete adjoint method, along with meaningful examples and validation, is presented. The method has proven to provide extremely accurate and reliable sensitivities.


Author(s):  
Matthias Hinze ◽  
André Schmidt ◽  
Remco I. Leine

In this article we consider the Lyapunov stability of mechanical systems containing fractional springpot elements. We obtain the potential energy of a springpot by an infinite dimensional mechanical analogue model. Furthermore, we consider a simple dynamical system containing a springpot as a functional differential equation and use the potential energy of the springpot in a Lyapunov functional to prove uniform stability and discuss asymptotic stability of the equilibrium with the help of an invariance theorem.


Sign in / Sign up

Export Citation Format

Share Document