Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case

1995 ◽  
Vol 126 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
Jacob Fish ◽  
Vladimir Belsky
2010 ◽  
Vol 7 ◽  
pp. 90-97
Author(s):  
M.N. Galimzianov ◽  
I.A. Chiglintsev ◽  
U.O. Agisheva ◽  
V.A. Buzina

Formation of gas hydrates under shock wave impact on bubble media (two-dimensional case) The dynamics of plane one-dimensional shock waves applied to the available experimental data for the water–freon media is studied on the base of the theoretical model of the bubble liquid improved with taking into account possible hydrate formation. The scheme of accounting of the bubble crushing in a shock wave that is one of the main factors in the hydrate formation intensification with increasing shock wave amplitude is proposed.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


Sign in / Sign up

Export Citation Format

Share Document