An extension of the superposition method for plane anisotropic elastic bodies

1985 ◽  
Vol 21 (5) ◽  
pp. 953-958 ◽  
Author(s):  
Enayat Mahajerin
2003 ◽  
Vol 70 (2) ◽  
pp. 180-190 ◽  
Author(s):  
E. Pan

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.


2019 ◽  
Vol 40 (6) ◽  
Author(s):  
J. Jaric ◽  
R. Vignjevic ◽  
D. Kuzmanovic

1998 ◽  
Vol 65 (3) ◽  
pp. 580-587 ◽  
Author(s):  
Chyanbin Hwu ◽  
C. W. Fan

In this paper, a two-dimensional contact problem of two dissimilar anisotropic elastic bodies is studied. The shapes of the boundaries of these two elastic bodies have been assumed to be approximately straight, but the contact region is not necessary to be small and the contact surface can be nonsmooth. Base upon these assumptions, three different boundary conditions are considered and solved. They are: the contact in the presence of friction, the contact in the absence of friction, and the contact in complete adhesion. By applying the Stroh’s formalism for anisotropic elasticity and the method of analytical continuation for complex function manipulation, general solutions satisfying these different boundary conditions are obtained in analytical forms. When one of the elastic bodies is rigid and the boundary shape of the other elastic body is considered to be fiat, the reduced solutions can be proved to be identical to those presented in the literature for the problems of rigid punches indenting into (or sliding along) the anisotropic elastic halfplane. For the purpose of illustration, examples are also given when the shapes of the boundaries of the elastic bodies are approximated by the parabolic curves.


Sign in / Sign up

Export Citation Format

Share Document