scholarly journals On Entropy Flux of Anisotropic Elastic Bodies

2019 ◽  
Vol 40 (6) ◽  
Author(s):  
J. Jaric ◽  
R. Vignjevic ◽  
D. Kuzmanovic
1998 ◽  
Vol 65 (3) ◽  
pp. 580-587 ◽  
Author(s):  
Chyanbin Hwu ◽  
C. W. Fan

In this paper, a two-dimensional contact problem of two dissimilar anisotropic elastic bodies is studied. The shapes of the boundaries of these two elastic bodies have been assumed to be approximately straight, but the contact region is not necessary to be small and the contact surface can be nonsmooth. Base upon these assumptions, three different boundary conditions are considered and solved. They are: the contact in the presence of friction, the contact in the absence of friction, and the contact in complete adhesion. By applying the Stroh’s formalism for anisotropic elasticity and the method of analytical continuation for complex function manipulation, general solutions satisfying these different boundary conditions are obtained in analytical forms. When one of the elastic bodies is rigid and the boundary shape of the other elastic body is considered to be fiat, the reduced solutions can be proved to be identical to those presented in the literature for the problems of rigid punches indenting into (or sliding along) the anisotropic elastic halfplane. For the purpose of illustration, examples are also given when the shapes of the boundaries of the elastic bodies are approximated by the parabolic curves.


Author(s):  
T. T. C. Ting

As a starter for anisotropic elastostatics we study special two-dimensional deformations of anisotropic elastic bodies, namely, antiplane deformations. Not all anisotropic elastic materials are capable of an antiplane deformation. When they are, the inplane displacement and the antiplane displacement are uncoupled. The deformations due to inplane displacement are plane strain deformations. Associated with plane strain deformations are plane stress deformations. After defining these special deformations in Sections 3.1 and 3.2 we present some basic solutions of antiplane deformations. They provide useful references for more general deformations we will study in Chapters 8, 10, and 11. The derivation and motivation in solving more general deformations in those chapters become more transparent if the reader reads this chapter first. The solutions obtained in those chapters reduce to the solutions presented here when the materials are restricted to special materials and the deformations are limited to antiplane deformations. In a fixed rectangular coordinate system xi (i=1, 2, 3), let ui, σij, and εij be the displacement, stress, and strain, respectively. The strain-displacement relations and the equations of equilibrium are . . .εij = 1/2 (ui,j + uj,i),. . . . . . (3.1 -1) . . . . . .σij,j =0,. . . . . . (3.1 - 2). . . in which repeated indices imply summation and a comma stands for differentiation. The stress-strain laws for an anisotropic elastic material can be written as σij = Cijks εks or εij = Sijksσks, . . .(3.1 - 3). . . where Cijks and Sijks are, respectively, the elastic stiffnesses and compliances.


Sign in / Sign up

Export Citation Format

Share Document