Immunological properties of canine prothrombin, its activation products, plasma and serum

1978 ◽  
Vol 13 (4) ◽  
pp. 637-644
Author(s):  
T. Takeuchi ◽  
Y. Takeda
1989 ◽  
Vol 61 (03) ◽  
pp. 386-391 ◽  
Author(s):  
Guido Tans ◽  
Truus Janssen-Claessen ◽  
Jan Rosing

SummaryIn this paper we report a method via which enzymatically active products formed during prothrombin activation can be detected by simple photographic means after SDS-gel electrophoresis, blotting onto a nitrocellulose membrane and visualization with the chromogenic substrate, S2238. After amidolytic detection the same nitrocellulose membrane can also be used for immunologic detection of prothrombin activation products, thus allowing a complete description of product formation during prothrombin activation.The detection limit of the so-called “amidoblot” is approximately 3 ng thrombin per gel sample which is comparable to the sensitivity of immunoblotting.It is further shown that the amidoblot technique can also be applied to other coagulation factors for which a suitable chromogenic substrate is available (factor XIIa, kallikrein, factor XIa, factor Xa, plasmin and activated protein C).


1991 ◽  
Vol 65 (04) ◽  
pp. 382-388 ◽  
Author(s):  
Dulce Veloso ◽  
Robert W Colman

SummaryPrekallikrein (PK), a zymogen of the contact system, and its activation products, kallikrein (KAL), KAl-inhibitor complexes and fragments containing KAL epitope(s) have been detected in human plasma by immunoblotting with a monoclonal anti-human plasma PK antibody, MAb 13G1L. Detection of antigen-MAb 13G11 complexes with peroxidase-conjugated anti-IgG showed that the two variants of PK (85- and 88-kDa) are the only major antigen species in normal, non-activated plasma. Upon plasma activation with kaolin, the intensity of the PK bands decreased with formation of complexes of KAL with CL inhibitor (C1 INH) and α2-rrtzcroglobulin (α2M) identical to those formed by the purified proteins. Immunoblots of normal plasma showed good correlation between the PK detected and the amount of plasma assayed. Increasing amounts of KAL incubated with a constant volume of PK-deficient plasma showed increasing amounts of KAL and of KAL-C1 INH and KAL-α2M complexes. Complexes of KALantithrombin III (ATIII) and the ratio of KALα2M/ KAL-CL INH were higher in activated CL INH-deficient plasmas than in activated normal plasmas. Protein resolution by 3-12% gradient SDS-PAGE and epitope detection with [125I]MAb 13G11 showed four KALα2M species and a 45-kDa fragment(s) in both surface-activated normal plasma and complexes formed by purified KAL and α2M. Immunoblots of activated plasma also showed bands at the position of KALCL INH and KALATIII complexes. When α1-antitrypsin Pittsburgh (cα1-AT, Pitts) was added to plasma before activation, KAL-α1-ALPitts was the main complex. The non-activated normal plasma revealed only an overloaded PK band. This is the first report of an antibody that recognizes KAL epitope(s) in KAL-α2M, KALATIII and KALa1-α1Pitts complexes and in the 45-kDa fragment(s). Therefore, MAb 13G11 should be useful for studying the structure of these complexes as well as the mechanism of complex formation. In addition, immunoblotting with MAb 13G11 would allow detection of KAl-inhibitor complexes in patient plasmas as indicators of activation of the contact system.


1962 ◽  
Vol 08 (03) ◽  
pp. 425-433 ◽  
Author(s):  
Ewa Marciniak ◽  
Edmond R Cole ◽  
Walter H Seegers

SummarySuitable conditions were found for the generation of autoprothrombin C from purified prothrombin with the use of Russell’s viper venom or trypsin. DEAE chromatographed prothrombin is structurally altered and has never been found to yield autoprothrombin C and also did not yield it when Russell’s viper venom or trypsin were used. Autoprothrombin C is derived from prothrombin with tissue extract thromboplastin, but not in large amounts with the intrinsic clotting factors. With the latter thrombin and autoprothrombin III are the chief activation products. Autoprothrombin III concentrates were prepared from serum and upon activation with 25% sodium citrate solution or with Russell’s viper venom large amounts of autoprothrombin C were obtained, and this was of high specific activity. Theoretically trypsin is not a thrombolytic agent, but on the contrary should lead to intravascular clotting.


1982 ◽  
Vol 257 (4) ◽  
pp. 1836-1844
Author(s):  
D.A. Madar ◽  
M.M. Sarasua ◽  
H.C. Marsh ◽  
L.G. Pedersen ◽  
K.E. Gottschalk ◽  
...  

1992 ◽  
Vol 267 (9) ◽  
pp. 6338-6346
Author(s):  
P.T. Kaumaya ◽  
A.M. VanBuskirk ◽  
E Goldberg ◽  
S.K. Pierce

Sign in / Sign up

Export Citation Format

Share Document