proteinase inhibitor
Recently Published Documents


TOTAL DOCUMENTS

2081
(FIVE YEARS 62)

H-INDEX

88
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Bo Zhang ◽  
Gang Wang ◽  
Cheng Bing Huang ◽  
Jian Nan Zhu ◽  
Yong Xue ◽  
...  

Background: Alcohol dependence is an overall health-related challenge; however, the specific mechanisms underlying alcohol dependence remain unclear. Serine proteinase inhibitor A3 (SERPINA3) plays crucial roles in multiple human diseases; however, its role in alcohol dependence clinical practice has not been confirmed.Methods: We screened Gene Expression Omnibus (GEO) expression profiles, and identified differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were generated using STRING and Cytoscape, and the key clustering module was identified using the MCODE plugin. SERPINA3-based target microRNA prediction was performed using online databases. Functional enrichment analysis was performed. Fifty-eight patients with alcohol dependence and 20 healthy controls were recruited. Clinical variables were collected and follow-up was conducted for 8 months for relapse.Results:SERPINA3 was identified as a DEG. ELANE and miR-137 were identified after PPI analysis. The enriched functions and pathways included acute inflammatory response, response to stress, immune response, and terpenoid backbone biosynthesis. SERPINA3 concentrations were significantly elevated in the alcohol dependence group than in healthy controls (P < 0.001). According to the median value of SERPINA3 expression level in alcohol dependence group, patients were divided into high SERPINA3 (≥2677.33 pg/ml, n = 29) and low SERPINA3 groups (<2677.33 pg/ml, n = 29). Binary logistic analysis indicated that IL-6 was statistically significant (P = 0.015) Kaplan-Meier survival analysis did not indicate any difference in event-free survival between patients with low and high SERPINA3 levels (P = 0.489) after 8 months of follow-up. Receiver characteristic curve analysis revealed that SERPINA3 had an area under the curve of 0.921 (P < 0.0001), with a sensitivity and specificity of 93.1 and 80.0%, respectively. Cox regression analysis revealed that aspartate transaminase level was a negative predictor of relapse (β = 0.003; hazard ratio = 1.003; P = 0.03).Conclusions:SERPINA3 level was remarkably elevated in patients with alcohol dependence than healthy controls, indicating that SERPINA3 is correlated with alcohol dependence. However, SERPINA3 may not be a potential predictive marker of relapse with patients in alcohol dependence.


Author(s):  
Juan D. Rios‐Díez ◽  
Yaremis Meriño‐Cabrera ◽  
Neilier Rodrigues Silva‐Junior ◽  
Rafael Almeida Barros ◽  
João Aguilar de Oliveira ◽  
...  

2021 ◽  
Vol 98 (5) ◽  
pp. 567-578
Author(s):  
A. L. Kravtsov ◽  
S. A. Bugorkova

The COVID-19 pandemic continues, causing colossal damage to the population and the global economy. As COVID-19 is studied, new data are emerging regarding the risk of severe coronavirus infection in patients with α1-antitrypsin deficiency. α1 -Antitrypsin is the main inhibitor and key endogenous regulator of the serine leukocyte proteinase activitry released from the granules of activated neutrophils to the cell surface and into the extracellular space. It has been established that the number of cases of severe course and death of COVID-19 in the territories of 68 countries of the world correlates with the frequency of the spread of mutations in the proteinase inhibitor gene among the population of these countries, at which the concentration of α1-antitrypsin in the human blood plasma is 10 times lower than normal. All this contributes to the revision of a number of provisions of the pathogenesis and therapy of a new coronavirus infection.The review presents an analysis of the literature on the role of an inhibitor of serine leukocyte proteinases in protecting the body from COVID-19. The participation of α1-antitrypsin in the inhibition of SARS-CoV-2 penetration into the respiratory tract epithelial cells, in the protection of the vascular endothelium, blood plasma proteins and elastin of the lung tissue from the damaging effect of leukocyte elastase released during neutrophil degranulation and the formation of neutrophil extracellular traps (NETs) is considered. The role of a1-antitrypsin in suppressing inflammation by limiting the secretion of proinflammatory cytokines and neutrophil extracellular traps into the blood has been shown. The individual links in the pathogenesis of the new coronavirus infection have been detailed, which will allow revising the strategy for reducing the risks of severe course of COVID-19.


Author(s):  
Refik Bozbuga

Abstract Background The plant parasitic nematode genus Meloidogyne parasitize almost all flowering crops. Plants respond with a variety of morphological and molecular mechanisms to reduce the effects of pathogens. Proteinase inhibitors (PI), a special group of plant proteins which are small proteins, involve in protective role in the plants attacked by microorganisms. Still, the plant response using PI against nematodes has not been well understood. Therefore, this study was aimed to determine the expression of proteinase inhibitor I (PI-I) gene subsequent the infection of M. incognita, M. javanica, and M. chitwoodi in tomato plants post nematode infections. Molecular methods were used to determine the PI gene expressions at different days post nematode infections in host tissues. Results Results revealed that the population of M. incognita species reached the highest level of nematode population followed by M. javanica and M. chitwoodi, respectively. All Meloidogyne species induced expression of PI-I gene reached at the utmost level at 3 days post infection (dpi) in host tissues. Relative gene expression level was sharply dropped at 7 dpi, 14 dpi, and 21 dpi in M. incognita induced gene expression in host tissues. Similar results were observed in host tissues after infection of M. javanica and M. chitwoodi. Conclusions The commonalities of plant response across a diverse Meloidogyne species interaction and the expression of PI gene may be related to plant defense system. Increased level of PI gene expressions in early infection days in host tissues induced by parasitic nematodes may share resemblances to the mechanisms of resistance on biotrophic interactions.


2021 ◽  
Author(s):  
Galina I. Izvekova ◽  
Tatyana V. Frolova ◽  
Evgeny I. Izvekov ◽  
Elena N. Kashinskaya ◽  
Mikhail M. Solovyev

2021 ◽  
Vol 22 (11) ◽  
pp. 5996
Author(s):  
Martina Oriano ◽  
Francesco Amati ◽  
Andrea Gramegna ◽  
Anthony De Soyza ◽  
Marco Mantero ◽  
...  

Airway inflammation plays a central role in bronchiectasis. Protease–antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases’ over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease–antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.


Shock ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Diego Guerrieri ◽  
Nella Gabriela Ambrosi ◽  
Horacio Romeo ◽  
Juan Salaberry ◽  
Fernanda Toniolo ◽  
...  

2021 ◽  
Vol 30 (3) ◽  
pp. 0-0
Author(s):  
Maciej Siewiński ◽  
Ewa Kilar ◽  
Lidia Hirnle ◽  
Teresa Skiba ◽  
Jakub Gburek ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3225
Author(s):  
Babar Usman ◽  
Neng Zhao ◽  
Gul Nawaz ◽  
Baoxiang Qin ◽  
Fang Liu ◽  
...  

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.


Sign in / Sign up

Export Citation Format

Share Document