In vitro processing of B. mori transfer RNA precursor molecules

Cell ◽  
1979 ◽  
Vol 17 (2) ◽  
pp. 389-397 ◽  
Author(s):  
Richard L. Garber ◽  
Sidney Altman
1987 ◽  
Vol 7 (9) ◽  
pp. 3131-3137
Author(s):  
A M Kleinschmidt ◽  
T Pederson

The small nuclear RNAs U1, U2, U4, and U5 are cofactors in mRNA splicing and, like the pre-mRNAs with which they interact, are transcribed by RNA polymerase II. Also like mRNAs, mature U1 and U2 RNAs are generated by 3' processing of their primary transcripts. In this study we have investigated the in vitro processing of an SP6-transcribed human U2 RNA precursor, the 3' end of which matches that of authentic human U2 RNA precursor molecules. Although the SP6-U2 RNA precursor was efficiently processed in an ammonium sulfate-fractionated HeLa cytoplasmic S100 extract, the product RNA was unstable. Further purification of the processing activity on glycerol gradients resolved a 7S activity that nonspecifically cleaved all RNAs tested and a 15S activity that efficiently processed the 3' end of pre-U2 RNA. The 15S activity did not process the 3' end of a tRNA precursor molecule. As demonstrated by RNase protection, the processed 3' end of the SP6-U2 RNA maps to the same nucleotides as does mature HeLa U2 RNA.


1987 ◽  
Vol 7 (9) ◽  
pp. 3131-3137 ◽  
Author(s):  
A M Kleinschmidt ◽  
T Pederson

The small nuclear RNAs U1, U2, U4, and U5 are cofactors in mRNA splicing and, like the pre-mRNAs with which they interact, are transcribed by RNA polymerase II. Also like mRNAs, mature U1 and U2 RNAs are generated by 3' processing of their primary transcripts. In this study we have investigated the in vitro processing of an SP6-transcribed human U2 RNA precursor, the 3' end of which matches that of authentic human U2 RNA precursor molecules. Although the SP6-U2 RNA precursor was efficiently processed in an ammonium sulfate-fractionated HeLa cytoplasmic S100 extract, the product RNA was unstable. Further purification of the processing activity on glycerol gradients resolved a 7S activity that nonspecifically cleaved all RNAs tested and a 15S activity that efficiently processed the 3' end of pre-U2 RNA. The 15S activity did not process the 3' end of a tRNA precursor molecule. As demonstrated by RNase protection, the processed 3' end of the SP6-U2 RNA maps to the same nucleotides as does mature HeLa U2 RNA.


Cell ◽  
1975 ◽  
Vol 5 (4) ◽  
pp. 389-400 ◽  
Author(s):  
J.G. Seidman ◽  
Francis J. Schmidt ◽  
K. Foss ◽  
William H. McClain

2002 ◽  
Vol 94 (5) ◽  
pp. 478-481 ◽  
Author(s):  
Seiichi Taguchi ◽  
Kumiko Arakawa ◽  
Keiichi Yokoyama ◽  
Shino Takehana ◽  
Hiroshi Takagi ◽  
...  
Keyword(s):  

2012 ◽  
Vol 209 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Stefanie Jöckel ◽  
Gernot Nees ◽  
Romy Sommer ◽  
Yang Zhao ◽  
Dmitry Cherkasov ◽  
...  

Foreign RNA serves as pathogen-associated molecular pattern (PAMP) and is a potent immune stimulator for innate immune receptors. However, the role of single bacterial RNA species in immune activation has not been characterized in detail. We analyzed the immunostimulatory potential of transfer RNA (tRNA) from different bacteria. Interestingly, bacterial tRNA induced type I interferon (IFN) and inflammatory cytokines in mouse dendritic cells (DCs) and human peripheral blood mononuclear cells (PBMCs). Cytokine production was TLR7 dependent because TLR7-deficient mouse DCs did not respond and TLR7 inhibitory oligonucleotides inhibited tRNA-mediated activation. However, not all bacterial tRNA induced IFN-α because tRNA from Escherichia coli Nissle 1917 and Thermus thermophilus were non-immunostimulatory. Of note, tRNA from an E. coli knockout strain for tRNA (Gm18)-2′-O-methyltransferase (trmH) regained immunostimulatory potential. Additionally, in vitro methylation of this immunostimulatory Gm18-negative tRNA with recombinant trmH from T. thermophilus abolished its IFN-α inducing potential. More importantly, Gm18-modified tRNA acted as TLR7 antagonist and blocked IFN-α induction of influenza A virus–infected PBMCs.


1990 ◽  
Vol 10 (8) ◽  
pp. 3868-3872 ◽  
Author(s):  
C M Shumard ◽  
C Torres ◽  
D C Eichler

In an investigation of the possible involvement of a highly purified nucleolar endoribonuclease in processing of pre-rRNA at the 3' end of the 18S rRNA sequence, an in vitro synthesized pre-18S rRNA transcript containing the 3' end region of 18S rRNA and the 5' region of the first internal transcribed spacer (ITS1) was used as a substrate for the enzyme. Cleavages generated by the nucleolar RNase were localized by S1 nuclease protection analysis and by the direct release of labeled rRNA products. Precise determination of the specificity of cleavage was achieved by RNA sequence analysis with end-labeled rRNA transcripts. These data demonstrated that the purified nucleolar RNase cleaved the pre-18S rRNA transcript at three specific sites relative to the 3' region of 18S rRNA. The first two sites included the mature 3'-end 18S rRNA sequence and a site approximately 55 nucleotides downstream of the 3'-end 18S rRNA sequence, both of which corresponded directly to recent results (Raziuddin, R. D. Little, T. Labella, and D. Schlessinger, Mol. Cell. Biol. 9:1667-1671, 1989) obtained with transfected mouse rDNA in hamster cells. The other cleavage occurred approximately 35 nucleotides upstream from the mature 3' end in the 18S rRNA sequence. The results from this study mimic the results obtained from in vivo studies for processing in the 3' region of pre-18S rRNA, supporting the proposed involvement of this nucleolar endoribonuclease in rRNA maturation.


BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (17) ◽  
Author(s):  
Chan Lin ◽  
Yujie Feng ◽  
Xueyan Peng ◽  
Jiaming Wu ◽  
Weili Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document