Reverse branch migration of holliday junctions by RecG protein: A new mechanism for resolution of intermediates in recombination and DNA repair

Cell ◽  
1993 ◽  
Vol 75 (2) ◽  
pp. 341-350 ◽  
Author(s):  
Matthew C. Whitby ◽  
Lizanne Ryder ◽  
Robert G. Lloyd
2012 ◽  
Vol 287 (15) ◽  
pp. 11820-11832 ◽  
Author(s):  
Olga M. Mazina ◽  
Matthew J. Rossi ◽  
Julianna S. Deakyne ◽  
Fei Huang ◽  
Alexander V. Mazin

Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3′→5′ direction, whereas RuvAB drives it in the 5′→3′ direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.


1994 ◽  
Vol 22 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Gary J. Sharples ◽  
Matthew C. Whitby ◽  
Lizanne Ryder ◽  
Robert G. Lloyd

Nature ◽  
2006 ◽  
Vol 442 (7102) ◽  
pp. 590-593 ◽  
Author(s):  
Dmitry V. Bugreev ◽  
Olga M. Mazina ◽  
Alexander V. Mazin

1997 ◽  
Vol 17 (5) ◽  
pp. 2381-2390 ◽  
Author(s):  
A E Parker ◽  
R K Clyne ◽  
A M Carr ◽  
T J Kelly

Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.


2020 ◽  
Author(s):  
Anupam Mondal ◽  
Arnab Bhattacherjee

AbstractReplication protein A (RPA) serves as hub protein inside eukaryotic cells, where it coordinates crucial DNA metabolic processes and activates the DNA-damage response system. A characteristic feature of its action is to associate with ssDNA intermediates before handing over them to downstream proteins. The length of ssDNA intermediates differs for different pathways. This means RPA must have mechanisms for selective processing of ssDNA intermediates based on their length, the knowledge of which is fundamental to elucidate when and how DNA repair and replication processes are symphonized. By employing extensive molecular simulations, we investigated the mechanism of binding of RPA to ssDNA of different lengths. We show that the binding involves dynamic equilibrium with a stable intermediate, the population of which increases with the length of ssDNA. The vital underlying factors are decoded through collective variable principal component analysis. It suggests a differently orchestrated set of interactions that define the action of RPA based on the sizes of ssDNA intermediates. We further estimated the association kinetics and probed the diffusion mechanism of RPA to ssDNA. RPA diffuses on short ssDNA through progressive ‘bulge’ formation. With long ssDNA, we observed a conformational change in ssDNA coupled with its binding to RPA in a cooperative fashion. Our analysis explains how the ‘short-lived,’ long ssDNA intermediates are processed quickly in vivo. The study thus reveals the molecular basis of several recent experimental observations related to RPA binding to ssDNA and provides novel insights into the RPA functioning in DNA repair and replication.Significance StatementDespite ssDNA be the common intermediate to all pathways involving RPA, how does the latter function differently in the DNA processing events such as DNA repair, replication, and recombination just based on the length of ssDNA intermediates remains unknown. The major hindrance is the difficulty in capturing the transient interactions between the molecules. Even attempts to crystallize RPA complexes with 32nt and 62nt ssDNA have yielded a resolved structure of only 25nt ssDNA wrapped with RPA. Here, we used a state-of-the-art coarse-grained protein-ssDNA model to unravel the detailed mechanism of binding of RPA to ssDNA. Our study illustrates the molecular origin of variations in RPA action during various DNA processing events depending on the length of ssDNA intermediates.


DNA Repair ◽  
2011 ◽  
Vol 10 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Isabel L. Woodman ◽  
Kirsty Brammer ◽  
Edward L. Bolt

Sign in / Sign up

Export Citation Format

Share Document