scholarly journals The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex

Cell ◽  
1995 ◽  
Vol 81 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Aurelian Radu ◽  
Mary Shannon Moore ◽  
Günter Blobel
2013 ◽  
Vol 24 (24) ◽  
pp. 3920-3938 ◽  
Author(s):  
Mario Niepel ◽  
Kelly R. Molloy ◽  
Rosemary Williams ◽  
Julia C. Farr ◽  
Anne C. Meinema ◽  
...  

The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.


2010 ◽  
Vol 21 (9) ◽  
pp. 1585-1596 ◽  
Author(s):  
Songli Xu ◽  
Maureen A. Powers

Chromosomal translocations involving the Nup98 gene are implicated in leukemias, especially acute myelogenous leukemia. These translocations generate chimeric fusion proteins, all of which have in common the N-terminal half of Nup98, which contains the nucleoporin FG/GLFG repeat motifs. The homeodomain group of Nup98 fusion proteins retain the C-terminus of a homeodomain transcription factor, including the homeobox responsible for DNA binding. Current models for Nup98 leukemogenesis invoke aberrant transcription resulting from recruitment of coregulators by the Nup98 repeat domain. Here we have investigated the behavior of Nup98-homeodomain fusion proteins throughout the cell cycle. At all stages, the fusion proteins exhibit a novel localization distinct from the component proteins or fragments. During interphase, there are dynamic interactions between the Nup98 fusions and endogenous Nup98 that lead to mislocalization of the intranuclear fraction of Nup98, but do not alter the level of Nup98 at the nuclear pore complex. During mitosis, no interaction between the fusion proteins and endogenous Nup98 is observed. However, the fusions are entirely concentrated at kinetochores and on chromosome arms, sites where the APC/C, a target of Nup98 regulation, is also found. Our observations suggest new possibilities for misregulation by which Nup98 translocations may contribute to cellular transformation and leukemogenesis.


Structure ◽  
2008 ◽  
Vol 16 (7) ◽  
pp. 1116-1125 ◽  
Author(s):  
Nils Schrader ◽  
Carolin Koerner ◽  
Katja Koessmeier ◽  
Jan-Amadé Bangert ◽  
Alfred Wittinghofer ◽  
...  

2015 ◽  
Vol 89 (21) ◽  
pp. 11069-11079 ◽  
Author(s):  
Nogi Park ◽  
Nicholas J. Schweers ◽  
Kurt E. Gustin

ABSTRACTEnteroviruses proteolyze nuclear pore complex (NPC) proteins (Nups) during infection, leading to disruption of host nuclear transport pathways and alterations in nuclear permeability. To better understand how enteroviruses exert these effects on nuclear transport, the mechanisms and consequences of Nup98 proteolysis were examined. The results indicate that Nup98 is rapidly targeted for degradation following enterovirus infection and that this is mediated by the enterovirus 2A protease (2Apro). Incubation of bacterially expressed orin vitro-translated Nup98 with 2Aproresults in proteolytic cleavage at multiple sitesin vitro, indicating that 2Aprocleaves Nup98 directly. Site-directed mutagenesis of putative cleavage sites identified Gly374 and Gly552 as the sites of 2Aproproteolysis in Nup98in vitroand in infected cells. Indirect immunofluorescence assays using an antibody that recognizes the N terminus of Nup98 revealed that proteolysis releases the N-terminal FG-rich region from the NPC. In contrast, similar analyses using an antibody to the C terminus indicated that this region is retained at the nuclear rim. Nup88, a core NPC component that serves as a docking site for Nup98, also remains at the NPC in infected cells. These findings support a model whereby the selective removal of Nup FG repeat domains leads to increased NPC permeability and inhibition of certain transport pathways, while retention of structural domains maintains the overall NPC structure and leaves other transport pathways unaffected.IMPORTANCEEnteroviruses are dependent upon host nuclear RNA binding proteins for efficient replication. This study examines the mechanisms responsible for alterations in nuclear transport in enterovirus-infected cells that lead to the cytoplasmic accumulation of these proteins. The results demonstrate that the enterovirus 2A protease directly cleaves the nuclear pore complex (NPC) protein, Nup98, at amino acid positions G374 and G552 bothin vitroand in infected cells. Cleavage at these positions results in the selective removal of the FG-containing N terminus of Nup98 from the NPC, while the C terminus remains associated. Nup88, a core component of the NPC that serves as a docking site for the C terminus of Nup98, remains associated with the NPC in infected cells. These findings help to explain the alterations in permeability and nuclear transport in enterovirus-infected cells and how NPCs remain functional for certain trafficking pathways despite significant alterations to their compositions.


Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


Author(s):  
N. Panté ◽  
M. Jarnik ◽  
E. Heitlinger ◽  
U. Aebi

The nuclear pore complex (NPC) is a ∼120 MD supramolecular machine implicated in nucleocytoplasmic transport, that is embedded in the double-membraned nuclear envelope (NE). The basic framework of the ∼120 nm diameter NPC consists of a 32 MD cytoplasmic ring, a 66 MD ‘plug-spoke’ assembly, and a 21 MD nuclear ring. The ‘central plug’ seen in en face views of the NPC reveals a rather variable appearance indicating that it is a dynamic structure. Projecting from the cytoplasmic ring are 8 short, twisted filaments (Fig. 1a), whereas the nuclear ring is topped with a ‘fishtrap’ made of 8 thin filaments that join distally to form a fragile, 30-50 nm distal diameter ring centered above the NPC proper (Fig. 1b). While the cytoplasmic filaments are sensitive to proteases, they as well as the nuclear fishtraps are resistant to RNase treatment. Removal of divalent cations destabilizes the distal rings and thereby opens the fishtraps, addition causes them to reform. Protruding from the tips of the radial spokes into perinuclear space are ‘knobs’ that might represent the large lumenal domain of gp210, a membrane-spanning glycoprotein (Fig. 1c) which, in turn, may play a topogenic role in membrane folding and/or act as a membrane-anchoring site for the NPC. The lectin wheat germ agglutinin (WGA) which is known to recognize the ‘nucleoporins’, a family of glycoproteins having O-linked N-acetyl-glucosamine, is found in two locations on the NPC (Fig. 1. d-f): (i) whereas the cytoplasmic filaments appear unlabelled (Fig. 1d&e), WGA-gold labels sites between the central plug and the cytoplasmic ring (Fig. le; i.e., at a radius of 25-35 nm), and (ii) it decorates the distal ring of the nuclear fishtraps (Fig. 1, d&f; arrowheads).


Sign in / Sign up

Export Citation Format

Share Document