chromosomal translocations
Recently Published Documents


TOTAL DOCUMENTS

702
(FIVE YEARS 83)

H-INDEX

82
(FIVE YEARS 7)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Juan José Rodríguez-Sevilla ◽  
Antonio Salar

Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.


2021 ◽  
pp. gr.276042.121
Author(s):  
Aneta Mikulasova ◽  
Daniel Kent ◽  
Marco Trevisan-Herraz ◽  
Nefeli Karataraki ◽  
Kent T.M Fung ◽  
...  

Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (MAF, MYC and FGFR3/NSD2) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009872
Author(s):  
Laura G. Macías ◽  
Melisa González Flores ◽  
Ana Cristina Adam ◽  
María E. Rodríguez ◽  
Amparo Querol ◽  
...  

Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocation generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments.


2021 ◽  
Author(s):  
Derek H. Janssens ◽  
Michael P. Meers ◽  
Steven J. Wu ◽  
Ekaterina Babaeva ◽  
Soheil Meshinchi ◽  
...  

AbstractAcute myeloid and lymphoid leukemias often harbor chromosomal translocations involving the KMT2A gene, encoding the KMT2A lysine methyltransferase (also known as mixed-lineage leukemia-1), and produce in-frame fusions of KMT2A to other chromatin-regulatory proteins. Here we map fusion-specific targets across the genome for diverse KMT2A oncofusion proteins in cell lines and patient samples. By modifying CUT&Tag chromatin profiling for full automation, we identify common and tumor-subtype-specific sites of aberrant chromatin regulation induced by KMT2A oncofusion proteins. A subset of KMT2A oncofusion-binding sites are marked by bivalent (H3K4me3 and H3K27me3) chromatin signatures, and single-cell CUT&Tag profiling reveals that these sites display cell-to-cell heterogeneity suggestive of lineage plasticity. In addition, we find that aberrant enrichment of H3K4me3 in gene bodies is sensitive to Menin inhibitors, demonstrating the utility of automated chromatin profiling for identifying therapeutic vulnerabilities. Thus, integration of automated and single-cell CUT&Tag can uncover epigenomic heterogeneity within patient samples and predict sensitivity to therapeutic agents.


Genetics ◽  
2021 ◽  
Author(s):  
Luca Comai ◽  
Kirk Amundson ◽  
Benny Ordonez ◽  
Xin Zhao ◽  
Guilherme Tomaz Braz ◽  
...  

Abstract Large scale structural variations, such as chromosomal translocations, can have profound effects on fitness and phenotype, but are difficult to identify and characterize. Here, we describe a simple and effective method aimed at identifying translocations using only the dosage of sequence reads mapped on the reference genome. We binned reads on genomic segments sized according to sequencing coverage and identified instances when copy number segregated in populations. For each dosage-polymorphic 1Mb bin, we tested independence, effectively an apparent linkage disequilibrium (LD), with other variable bins. In nine potato (Solanum tuberosum) dihaploid families translocations affecting pericentromeric regions were common and in two cases were due to genomic misassembly. In two populations, we found evidence for translocation affecting euchromatic arms. In cv. PI 310467, a non-reciprocal translocation between chromosome 7 and 8 resulted in a 5-3 copy number change affecting several Mb at the respective chromosome tips. In cv. “Alca Tarma”, the terminal arm of chromosome 4 translocated to the tip of chromosome 1. Using oligonucleotide-based fluorescent in situ hybridization painting probes (oligo-FISH), we tested and confirmed the predicted arrangement in PI 310467. In 192 natural accessions of Arabidopsis thaliana, dosage haplotypes tended to vary continuously and resulted in higher noise, while apparent LD between pericentromeric regions suggested the effect of repeats. This method, LD-CNV, should be useful in species where translocations are suspected because it tests linkage without the need for genotyping.


2021 ◽  
Author(s):  
Line MANCEAU ◽  
Julien RICHARD ALBERT ◽  
Pier-Luigi LOLLINI ◽  
Maxim V. C. GREENBERG ◽  
Pascale GILARDI-HEBENSTREIT ◽  
...  

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Both PAX-FOXO1s result in related cell transformation in animal models, but both mutations are associated with distinct pathological manifestations in patients. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 causes stronger de novo transactivation of its bound regions than PAX3-FOXO1, resulting in greater transcriptomic dynamics involving genes regulating cell shape and cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into M phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into S phase, and causes more genomic instabilities. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the transcriptional activities of PAX3-FOXO1 and PAX7-FOXO1. Furthermore, the identified pronounced deleterious effects of PAX7-FOXO1 provide an explanation for the low frequency of the translocation generating this factor in patients with rhabdomyosarcoma.


Sign in / Sign up

Export Citation Format

Share Document