scholarly journals Some combinatorial problems associated with products of conjugacy classes of the symmetric group

1988 ◽  
Vol 49 (2) ◽  
pp. 363-369 ◽  
Author(s):  
D.M Jackson
2021 ◽  
pp. 594-603
Author(s):  
Peshawa M. Khudhur

Assume that  is a meromorphic fuction of degree n where X is compact Riemann surface of genus g. The meromorphic function gives a branched cover of the compact Riemann surface X. Classes of such covers are in one to one correspondence with conjugacy classes of r-tuples (  of permutations in the symmetric group , in which  and s generate a transitive subgroup G of  This work is a contribution to the classification of all primitive groups of degree 7, where X is of genus one.


1992 ◽  
Vol 35 (2) ◽  
pp. 152-160 ◽  
Author(s):  
François Bédard ◽  
Alain Goupil

AbstractThe action by multiplication of the class of transpositions of the symmetric group on the other conjugacy classes defines a graded poset as described by Birkhoff ([2]). In this paper, the edges of this poset are given a weight and the structure obtained is called the poset of conjugacy classes of the symmetric group. We use weights of chains in the posets to obtain new formulas for the decomposition of products of conjugacy classes of the symmetric group in its group algebra as linear combinations of conjugacy classes and we derive a new identity involving partitions of n.


1974 ◽  
Vol 26 (02) ◽  
pp. 352-354 ◽  
Author(s):  
Jacques Dubois

The permanent of an n-square complex matrix P = (pij ) is defined by where the summation extends over Sn , the symmetric group of degree n. This matrix function has considerable significance in certain combinatorial problems [6; 7]. The properties and many related problems about the permanent are presented in [3] along with an extensive bibliography.


1987 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Saeed-ul-Islam

This paper is devoted to the determining of the irreducible linear representations of the generalized symmetric group (elsewhere written as , Cm ≀ Sn or G(m, 1, n)) by considering the conjugacy classes of and then constructing the same number of inequivalent irreducible linear representations of . These have previously been determined by Kerber [2, Section 5] using Clifford's theory applied to wreath products.


1977 ◽  
Vol 24 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Bola O. Balogun

AbstractA finite group is called repetition-free if its conjugacy classes have distinct sizes. It is known that a supersolvable repetition-free group is necessarily isomorphie to Sym(3). the symmetric group on three symbols. Thus the question arises as to whether Sym (3) is the only repetition-free group. In this paper it is proved that if mk denotes the minimum of the orders of the centralizers of elements of a repetition-free group G and mk ≦ 4 then G is isomorphie to Sym (3).


2012 ◽  
Vol 9 (3) ◽  
pp. 565-568
Author(s):  
Baghdad Science Journal

For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by Xm ,is the set Xm = That is , Xm is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group Sn, the class Cn (n odd positive integer) split into two conjugacy classes in An denoted Cn+ and Cn- . C+ and C- were used for these two parts of Cn. This work we prove that for some odd n ,the class C of 5- cycle in Sn has the property that = An n 7 and C+ has the property that each element of C+ is conjugate to its inverse, the square of each element of it is the element of C-, these results were used to prove that C+ C- = An exceptional of I (I the identity conjugacy class), when n=5+4k , k>=0.


Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo Amaral ◽  
Fang Fang ◽  
Klee Irwin

We find that the degeneracies and many peculiarities of the DNA genetic code may be described thanks to two closely related (fivefold symmetric) finite groups. The first group has signature $G=\mathbb{Z}_5 \rtimes H$ where $H=\mathbb{Z}_2 . S_4\cong 2O$ is isomorphic to the binary octahedral group $2O$ and $S_4$ is the symmetric group on four letters/bases. The second group has signature $G=\mathbb{Z}_5 \rtimes GL(2,3)$ and points out a threefold symmetry of base pairings. For those groups, the representations for the $22$ conjugacy classes of $G$ are in one-to-one correspondence with the multiplets encoding the proteinogenic amino acids. Additionally, most of the $22$ characters of $G$ attached to those representations are informationally complete. The biological meaning of these coincidences is discussed.


2021 ◽  
Vol 31 (2) ◽  
pp. 302-322
Author(s):  
O. Tout ◽  

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.


1984 ◽  
Vol 96 (2) ◽  
pp. 195-201 ◽  
Author(s):  
John F. Humphreys

Let G be a finite group, Sn be the symmetric group on n symbols and An be the corresponding alternating group. The conjugacy classes of the wreath product GSn (or monomial group as it is sometimes known) and the conjugacy classes of GAn have been described by Kerber (see [2] and [3]). The group Sn has a double cover n so that the faithful complex representations of this double cover may be regarded as protective representations of Sn. In Section 2, a particular double cover for GSn is constructed, the faithful complex representations of this group being the subject of a joint article with Peter Hoffman[1]. In the present paper, our task is to determine whether a conjugacy class of GSn corresponds to one or to two conjugacy classes in the double cover of GSn (and similarly for GAn). The main results, Theorems 1 and 2, are stated precisely in Section 2 and proved in Sections 3 and 4 respectively. The case when G = 1 provides classical results of Schur ([5], Satz IV). When G is a cyclic group, Read [4] has determined the conjugacy classes, not just for our particular double cover, but for all possible double covers of GSn.


Sign in / Sign up

Export Citation Format

Share Document