scholarly journals Groups with large conjugacy classes

1977 ◽  
Vol 24 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Bola O. Balogun

AbstractA finite group is called repetition-free if its conjugacy classes have distinct sizes. It is known that a supersolvable repetition-free group is necessarily isomorphie to Sym(3). the symmetric group on three symbols. Thus the question arises as to whether Sym (3) is the only repetition-free group. In this paper it is proved that if mk denotes the minimum of the orders of the centralizers of elements of a repetition-free group G and mk ≦ 4 then G is isomorphie to Sym (3).

1984 ◽  
Vol 96 (2) ◽  
pp. 195-201 ◽  
Author(s):  
John F. Humphreys

Let G be a finite group, Sn be the symmetric group on n symbols and An be the corresponding alternating group. The conjugacy classes of the wreath product GSn (or monomial group as it is sometimes known) and the conjugacy classes of GAn have been described by Kerber (see [2] and [3]). The group Sn has a double cover n so that the faithful complex representations of this double cover may be regarded as protective representations of Sn. In Section 2, a particular double cover for GSn is constructed, the faithful complex representations of this group being the subject of a joint article with Peter Hoffman[1]. In the present paper, our task is to determine whether a conjugacy class of GSn corresponds to one or to two conjugacy classes in the double cover of GSn (and similarly for GAn). The main results, Theorems 1 and 2, are stated precisely in Section 2 and proved in Sections 3 and 4 respectively. The case when G = 1 provides classical results of Schur ([5], Satz IV). When G is a cyclic group, Read [4] has determined the conjugacy classes, not just for our particular double cover, but for all possible double covers of GSn.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1993 ◽  
Vol 160 (2) ◽  
pp. 441-460 ◽  
Author(s):  
L.G. Kovacs ◽  
G.R. Robinson

2015 ◽  
Vol 74 (1) ◽  
Author(s):  
M. Jahandideh ◽  
M. R. Darafsheh ◽  
N. H. Sarmin ◽  
S. M. S. Omer

Abstract - Let G􀡳 be a non- abelian finite group. The non-commuting graph ,􀪡is defined as a graph with a vertex set􀡳 − G-Z(G)􀢆in which two vertices x􀢞 and y􀢟 are joined if and only if xy􀢞􀢟 ≠ yx􀢟􀢞.  In this paper, we invest some results on the number of edges set , the degree of avertex of non-commuting graph and the number of conjugacy classes of a finite group. In order that if 􀪡􀡳non-commuting graph of H ≅ non - commuting graph of G􀪡􀡴,H 􀡴 is afinite group, then |G􀡳| = |H􀡴| .


1988 ◽  
Vol 64 (1) ◽  
pp. 87-127 ◽  
Author(s):  
Antonio Vera-López ◽  
MA Concepción Larrea

1979 ◽  
Vol 20 (1) ◽  
pp. 57-70 ◽  
Author(s):  
J.R. McMullen ◽  
J.F. Price

A duality theory for finite abelian hypergroups over fairly general fields is presented, which extends the classical duality for finite abelian groups. In this precise sense the set of conjugacy classes and the set of characters of a finite group are dual as hypergroups.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


Sign in / Sign up

Export Citation Format

Share Document