complete quantum
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 3)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 478
Author(s):  
Roberto Casadio

Classical general relativity predicts the occurrence of spacetime singularities under very general conditions. Starting from the idea that the spacetime geometry must be described by suitable states in the complete quantum theory of matter and gravity, we shall argue that this scenario cannot be realised physically since no proper quantum state may contain the infinite momentum modes required to resolve the singularity.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kanato Goto ◽  
Yuya Kusuki ◽  
Kotaro Tamaoka ◽  
Tomonori Ugajin

Abstract We study how coarse-graining procedure of an underlying UV-complete quantum gravity gives rise to a connected geometry. It has been shown, quantum entanglement plays a key role in the emergence of such a geometric structure, namely a smooth Einstein-Rosen bridge. In this paper, we explore the possibility of the emergence of similar geometric structure from classical correlation, in the AdS/CFT setup. To this end, we consider a setup where we have two decoupled CFT Hilbert spaces, then choose a random typical state in one of the Hilbert spaces and the same state in the other. The total state in the fine-grained picture is of course a tensor product state, but averaging over the states sharing the same random coefficients creates a geometric connection for simple probes. Then, the apparent spatial wormhole causes a factorization puzzle. We argue that there is a spatial analog of half-wormholes, which resolves the puzzle in the similar way as the spacetime half-wormholes.


2021 ◽  
Author(s):  
Simone Perriello ◽  
Alessandro Barenghi ◽  
Gerardo Pelosi

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giacomo Corrielli ◽  
Andrea Crespi ◽  
Roberto Osellame

Abstract Integrated quantum photonics, i.e. the generation, manipulation, and detection of quantum states of light in integrated photonic chips, is revolutionizing the field of quantum information in all applications, from communications to computing. Although many different platforms are being currently developed, from silicon photonics to lithium niobate photonic circuits, none of them has shown the versatility of femtosecond laser micromachining (FLM) in producing all the components of a complete quantum system, encompassing quantum sources, reconfigurable state manipulation, quantum memories, and detection. It is in fact evident that FLM has been a key enabling tool in the first-time demonstration of many quantum devices and functionalities. Although FLM cannot achieve the same level of miniaturization of other platforms, it still has many unique advantages for integrated quantum photonics. In particular, in the last five years, FLM has greatly expanded its range of quantum applications with several scientific breakthroughs achieved. For these reasons, we believe that a review article on this topic is very timely and could further promote the development of this field by convincing end-users of the great potentials of this technological platform and by stimulating more research groups in FLM to direct their efforts to the exciting field of quantum technologies.


Author(s):  
C Sivaram ◽  
Arun Kenath ◽  
Avijeet Prasad

One of the biggest challenges in modern physics is how to unify gravity with quantum theory. There is an absence of a complete quantum theory of gravity, and conventionally it is thought that the effects of quantum gravity occur only at high energies (Planck scale). Here we suggest that certain novel quantum effects of gravity can become significant even at lower energies and could be tested at laboratory scales. We also suggest a few indirect effects of dark energy that can show up at laboratory scales. Using these ideas, we set observational constraints on radio recombination lines of the Rydberg atoms. We further suggest that high-precision measurements of Casimir effects for smaller plate separation could also show some manifestations of the presence of dark energy.


2021 ◽  
Vol 3 (2) ◽  
pp. 316-324
Author(s):  
Fritz W. Bopp

Starting with unitary quantum dynamics, we investigate how to add quantum measurements. Quantum measurements have four essential components: the furcation, the witness production, an alignment projection, and the actual choice decision. The first two components still lie in the domain of unitary quantum dynamics. The decoherence concept explains the third contribution. It can be based on the requirement that witnesses reaching the end of time on the wave function side and the conjugate one have to be identical. In this way, it also stays within the quantum dynamics domain. The surjection hypothesis explains the actual choice decision. It is based on a two boundary interpretation applied to the complete quantum universe. It offers a simple way to reduce these seemingly random projections to purely deterministic unitary quantum dynamics, eliminating the measurement problem.


2021 ◽  
Vol 126 (15) ◽  
Author(s):  
Adrien Devolder ◽  
Paul Brumer ◽  
Timur V. Tscherbul

Author(s):  
Fritz W. Bopp

Starting with unitary quantum dynamics, we investigate how to add quantum measurements. Quantum measurements have four essential components: the furcation, the witness production, an alignment projection, and the actual choice decision. The first two components still lie in the domain of unitary quantum dynamics. The decoherence concept explains the third contribution. It can be based on the requirement that witnesses reaching the end of time on the wave function side and the conjugate one have to be identical. In this way, it also stays within the quantum dynamics domain. The surjection hypothesis explains the actual choice decision. It is based on a two boundary interpretation applied to the complete quantum universe. It offers a simple way to reduce these seemingly random projections to purely deterministic unitary quantum dynamics, eliminating the measurement problem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shihan Sajeed ◽  
Poompong Chaiwongkhot ◽  
Anqi Huang ◽  
Hao Qin ◽  
Vladimir Egorov ◽  
...  

AbstractAlthough quantum communication systems are being deployed on a global scale, their realistic security certification is not yet available. Here we present a security evaluation and improvement protocol for complete quantum communication systems. The protocol subdivides a system by defining seven system implementation sub-layers based on a hierarchical order of information flow; then it categorises the known system implementation imperfections by hardness of protection and practical risk. Next, an initial analysis report lists all potential loopholes in its quantum-optical part. It is followed by interactions with the system manufacturer, testing and patching most loopholes, and re-assessing their status. Our protocol has been applied on multiple commercial quantum key distribution systems to improve their security. A detailed description of our methodology is presented with the example of a subcarrier-wave system. Our protocol is a step towards future security evaluation and security certification standards.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1993
Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo M. Amaral ◽  
Fang Fang ◽  
Klee Irwin

We find that the degeneracies and many peculiarities of the DNA genetic code may be described thanks to two closely related (fivefold symmetric) finite groups. The first group has signature G=Z5⋊H where H=Z2.S4≅2O is isomorphic to the binary octahedral group 2O and S4 is the symmetric group on four letters/bases. The second group has signature G=Z5⋊GL(2,3) and points out a threefold symmetry of base pairings. For those groups, the representations for the 22 conjugacy classes of G are in one-to-one correspondence with the multiplets encoding the proteinogenic amino acids. Additionally, most of the 22 characters of G attached to those representations are informationally complete. The biological meaning of these coincidences is discussed.


Sign in / Sign up

Export Citation Format

Share Document