scholarly journals Irreducible representations of the generalized symmetric group Bmn

1987 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Saeed-ul-Islam

This paper is devoted to the determining of the irreducible linear representations of the generalized symmetric group (elsewhere written as , Cm ≀ Sn or G(m, 1, n)) by considering the conjugacy classes of and then constructing the same number of inequivalent irreducible linear representations of . These have previously been determined by Kerber [2, Section 5] using Clifford's theory applied to wreath products.

A new ‘most economical’ algorithm for the construction of diatomics in molecules secular equations is described. The method does not require the basis functions to be written down explicitly, since overlap may be factored out of the equations entirely. The theory is presented in detail for the particular case of homogeneous alkali metal clusters. A knowledge of the irreducible representations of the symmetric group for the Jahn-Serber basis set is necessary. The irreducible representations are derived by a genealogical procedure. Some preliminary calculations are presented for the molecules Li 3 through Li 6 , Li + 3 and Li + 4 . The lithium clusters are found to be stable with respect to all possible dissociations, and the i.ps of Li 3 and Li 4 are in agreement with the trends for the species Na 3 , Na 4 , K 3 , K 4 , etc., whose i.ps have been measured experimentally.


10.37236/1809 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Mendes ◽  
Jeffrey Remmel ◽  
Jennifer Wagner

A $\lambda$-ring version of a Frobenius characteristic for groups of the form $G \wr S_n$ is given. Our methods provide natural analogs of classic results in the representation theory of the symmetric group. Included is a method decompose the Kronecker product of two irreducible representations of $G\wr S_n$ into its irreducible components along with generalizations of the Murnaghan-Nakayama rule, the Hall inner product, and the reproducing kernel for $G\wr S_n$.


2019 ◽  
pp. 33-43
Author(s):  
Vasilii S. Duzhin ◽  
◽  
Anastasia A. Chudnovskaya ◽  

Search for Young diagrams with maximum dimensions or, equivalently, search for irreducible representations of the symmetric group $S(n)$ with maximum dimensions is an important problem of asymptotic combinatorics. In this paper, we propose algorithms that transform a Young diagram into another one of the same size but with a larger dimension. As a result of massive numerical experiments, the sequence of $10^6$ Young diagrams with large dimensions was constructed. Furthermore, the proposed algorithms do not change the first 1000 elements of this sequence. This may indicate that most of them have the maximum dimension. It has been found that the dimensions of all Young diagrams of the resulting sequence starting from the 75778th exceed the dimensions of corresponding diagrams of the greedy Plancherel sequence.


1997 ◽  
Vol 06 (06) ◽  
pp. 851-877 ◽  
Author(s):  
Weiping Li

Casson defined an invariant which can be thought of as the number of conjugacy classes of irreducible representations of π1(Y) into SU(2) counted with signs, where Y is an oriented integral homology 3-sphere. Lin defined a similar invariant (the signature of a knot) for a braid representative of a knot in S3. In this paper, we give a natural generalization of Casson-Lin's invariant. Our invariant is the symplectic Floer homology for the representation space of π1(S3 \ K) into SU(2) with trace-zero along all meridians. The symplectic Floer homology of braids is a new invariant of knots and its Euler number is the negative of Casson-Lin's invariant.


1973 ◽  
Vol 25 (5) ◽  
pp. 941-959 ◽  
Author(s):  
Y. J. Abramsky ◽  
H. A. Jahn ◽  
R. C. King

Frobenius [2; 3] introduced the symbolsto specify partitions and the corresponding irreducible representations of the symmetric group Ss.


1949 ◽  
Vol 1 (2) ◽  
pp. 166-175 ◽  
Author(s):  
G. de B. Robinson

The results of the present paper can be interpreted (a) in terms of the theory of the representations of the symmetric group, or (b) in terms of the corresponding theory of the full linear group. In the latter connection they give a solution to the problem of the expression of an invariant matrix of an invariant matrix as a sum of invariant matrices, in the sense of Schur's Dissertation. D. E. Littlewood has pointed out the significance of this problem for invariant theory and has attacked it via Schur functions, i.e. characters of the irreducible representations of the full linear group. We shall confine our attention here to the interpretation (a).


1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 414 ◽  
Author(s):  
Alberto Ibort ◽  
Miguel Rodríguez

In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document