95/03729 The technical and economic feasibility of biomass gasification for power generation

1995 ◽  
Vol 36 (4) ◽  
pp. 269
2018 ◽  
Vol 61 ◽  
pp. 00011
Author(s):  
Archishman Bose ◽  
Kiran Raj ◽  
Denitsa Kuzeva ◽  
Tommaso Mura ◽  
Jialei Xin ◽  
...  

Decentralized power generation, from renewables, is an attractive option for the future energy transition. Through a case study, the techno-economic feasibility to produce own power from distributed renewable to de-carbonize the operations of the Small and Medium Scale Enterprises (SMEs) was critically analysed. The case study was performed on one of the leading printing outfits of Sri Lanka. Solar photovoltaic (PV) and biomass gasification systems are the most cost-efficient and easy to operate technologies for grid-connected, small-scale power generation, at present, for the context. Grid integration has been found as a major challenge, in both technical and economic parameters of the project. The low capacity factor of solar PV and complexity of the supply chain for biomass power systems are critical to the respective technologies. A hybrid Solar PV-Biomass gasification power plant would have superior techno-economic performances with lower environmental impact than stand-alone systems. An equal share of the net power capacity between the technologies was obtained as the most suitable combination for the proposed hybrid power plant. A net carbon dioxide reduction of more than eighty percent of the operations of the SMEs is feasible. Socio-political factors also have a high impact on overall viability of such small-scale systems.


Author(s):  
C. C. P. Pian ◽  
T. A. Volk ◽  
L. P. Abrahamson ◽  
E. H. White ◽  
J. Jarnefeld

Energy ◽  
2021 ◽  
Vol 226 ◽  
pp. 120342
Author(s):  
Dan Cudjoe ◽  
Emmanuel Nketiah ◽  
Bright Obuobi ◽  
Gibbson Adu-Gyamfi ◽  
Mavis Adjei ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 12
Author(s):  
Arthur Leandro Guerra Pires ◽  
Paulo Rotella Junior ◽  
Sandra Naomi Morioka ◽  
Luiz Célio Souza Rocha ◽  
Ivan Bolis

Offshore wind energy has been identified as one of the most promising and increasingly attractive sources of energy. This technology offers a long-term power-generation source, less environmental impact, and fewer physical restrictions. However, given the complexity of this technology, economic feasibility studies are essential. Thus, this study aims to identify the main trends and criteria or the methods used in the economic feasibility studies of offshore wind energy, providing a review of the state of the art in this literature. For this, a Systematic Literature Review was carried out. The article shows the growing interest in offshore wind power generation and highlights how recently the interest in the studies that assess the technical–economic feasibility of this source has grown; it presents the main milestones of the topic. Based on a structured literature review, this article identifies the main trends in this topic: (i) wind farms, (ii) risk, (iii) floating offshore wind farms, (iv) decommissioning and repowering, (v) net present value, (vi) life cycle cost, and (vii) multi-criteria decision-making; it provides a broad view of the methodological possibilities and specificities for investors and researchers interested in conducting studies on the economic feasibility of offshore wind generation. In addition, finally, a research agenda is proposed.


Sign in / Sign up

Export Citation Format

Share Document