scholarly journals Techno-Economic Assessment of Solar-Driven Steam Gasification of Biomass for Large-Scale Hydrogen Production

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.

2019 ◽  
Vol 3 (4) ◽  
pp. 87
Author(s):  
Massimo Rivarolo ◽  
Gustavo Riveros-Godoy ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper aims at investigating clean hydrogen production from the large size (14 GW) hydroelectric power plant of Itaipu, located on the border between Paraguay and Brazil, the two countries that own and manage the plant. The hydrogen, produced by a water electrolysis process, is converted into ammonia through the well-known Haber-Bosch process. Hydraulic energy is employed to produce H2 and N2, respectively, from a large-scale electrolysis system and an air separation unit. An economic feasibility analysis is performed considering the low electrical energy price in this specific scenario and that Paraguay has strong excess of renewable electrical energy but presents a low penetration of electricity. The proposal is an alternative to increase the use of electricity in the country. Different plant sizes were investigated and, for each of them, ammonia production costs were determined and considered as a term of comparison with traditional ammonia synthesis plants, where H2 is produced from methane steam reforming and then purified. The study was performed employing a software developed by the authors’ research group at the University of Genoa. Finally, an energetic, environmental, and economic comparison with the standard production method from methane is presented.


2012 ◽  
Vol 512-515 ◽  
pp. 1418-1421 ◽  
Author(s):  
Qiu Hui Yan ◽  
Bei Bei Wang

Based on the integration of different systems and the comprehensive step utilization of energy, the system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been coupled by using the combination of solar and biomass as an energy source. As a model compound of biomass, glucose was gasified in supercritical water at 25MPa and 873K, whether there is pre-heater water in the hydrogen production system was compared by the way of thermodynamic analysis. The results show that energy and exergy efficiency is high in the hydrogen production system with pre-heat water.


2016 ◽  
Vol 46 (7) ◽  
pp. 1295-1300 ◽  
Author(s):  
Felipe Luis Rockenbach ◽  
Adriano Mendonça Souza ◽  
João Helvio Righi de Oliveira

ABSTRACT: This study aimed to measure the economic feasibility and the time needed to return capital invested for the installation of a swine manure treatment system, these values originated the sale of carbon credits and/or of compensation of electric energy in swine farms, using the Box-Jenkins forecast models. It was found that the use of biogas is a viable option in a large scale with machines that operate daily for 10h or more, being the return period between 70 to 80 months. Time series analysis models are important to anticipate the series under study behavior, providing the swine breeder/investor means to reduce the financial investment risk as well as helping to decrease the production costs. Moreover, this process can be seen as another source of income and enable the breeder to be self-sufficient in the continuous supply of electric energy, which is very valuable nowadays considering that breeders are now increasingly using various technologies.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Paul Lichty ◽  
Christopher Perkins ◽  
Bryan Woodruff ◽  
Carl Bingham ◽  
Alan Weimer

High temperature biomass gasification has been performed in a prototype concentrated solar reactor. Gasification of biomass at high temperatures has many advantages compared with historical methods of producing fuels. Enhancements in overall conversion, product composition ratios, and tar reduction are achievable at temperatures greater than 1000°C. Furthermore, the utilization of concentrated solar energy to drive these reactions eliminates the need to consume a portion of the product stream for heating and some of the solar energy is stored as chemical energy in the product stream. Experiments to determine the effects of temperature, gas flow rate, and feed type were conducted at the high flux solar furnace at the National Renewable Energy Laboratory, Golden, CO. These experiments were conducted in a reflective cavity multitube prototype reactor. Biomass type was found to be the only significant factor within a 95% confidence interval. Biomass conversion as high as 68% was achieved on sun. Construction and design considerations of the prototype reactor are discussed as well as initial performance results.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7627
Author(s):  
Youssef Kassem ◽  
Hüseyin Gökçekuş ◽  
Ali Güvensoy

The growth of populations and economy in Northern Cyprus has led to continuing utilization of fossil fuels as the primary source of electricity, which will raise environmental pollution. Thus, utilizing renewable energy, particularly solar energy, might be a solution to minimize this issue. This paper presents the potential of grid-connected solar PV power generation at Near East University Hospital (NEU Hospital), one of the largest and leading medical facilities in Northern Cyprus, to meet the energy demand during the daytime to reduce energy bills. For this purpose, the first objective of the study is to evaluate the solar energy potential as a power source for the NEU Hospital based on four datasets (actual measurement, Satellite Application Facility on Climate Monitoring (CMSAF), Surface Radiation Data Set-Heliosat (SARAH), and ERA-5, produced by the European Centre for Medium-range Weather Forecast). The results showed that the solar resource of the selected location is categorized as excellent (class 5), that is, the global solar radiation is within the range of 1843.8–2035.9 kWH/m2. The second objective is to investigate the impact of orientation angles on PV output, capacity factor, economic feasibility indicators, and CO2 emissions by using different PV modules. The results are compared with optimum orientation angles found by Photovoltaic Geographical Information System (PVGIS) simulation software. This objective was achieved by using RETScreen Expert software. The results demonstrated that the highest performance of the proposed system was achieved for orientation angles of 180° (azimuth angle) and −35° (tilt angle). Consequently, it is recommended that orientation angles, PV modules, and market prices are considered to maximize energy production and reduce electricity production costs.


Author(s):  
Varalakshmi Kandanuri

This paper analyses the production of functional chicken meat products from economic perspectives. It analyses and compares the economics and investment feasibility on different size groups of processing plants in India. The primary data on input use and output yield were taken from studies of NRCM and data was analysed using economic analysis and investment appraisal techniques like NPV, IRR(%), BC ratio, and Break even analysis. The results indicated that the cost of production of functional products was 5.2 and 5.18 and 4.59 US dollars per kg on small, medium and large scale units respectively. All the processing units are found to be economically feasible with NPV of US$ 12727, 64661 and 153703, IRR of 26%,31% and 42% and B-C ratio was estimated as 1.56, 1.78 and 2.29 for small, medium and large scale units respectively. Economies of scale is evident form all perspectives like production costs, profits, discounting measures and breakeven point. The study found the feasibility of functional meat products in India for commercial production.


Sign in / Sign up

Export Citation Format

Share Document