95/03753 Enhanced performance prediction of solar collector/storage water heaters with reflector systems — a comparative study

1995 ◽  
Vol 36 (4) ◽  
pp. 271
1988 ◽  
Vol 110 (3) ◽  
pp. 230-232
Author(s):  
C. Saltiel

A comparative study of the yearly performance of multistage solar collector systems, (comprised of more than one collector type) with a single on/off flow control strategy for all the collectors and separate on/off controls for each collector stage, is performed. Detailed numerical simulations under a range of climatic conditions showed that there is little advantage in using individual collector controls over a single on/off control strategy when the systems operate at low collector thresholds, but differences in system performance can be quite significant at high threshold values. In addition, the choice of the single control strategy (i.e., which collector the strategy is based on) at low thresholds is not critical in terms of system performance.


Author(s):  
Alexios Papadimitratos ◽  
Sarvenaz Sobhansarbandi ◽  
Vladimir Pozdin ◽  
Anvar Zakhidov ◽  
Fatemeh Hassanipour

This paper presents a novel method of integrating Phase Change Materials (PCMs) and Silicone oil within the Evacuated solar Tube Collectors (ETCs) for application in Solar Water Heaters (SWHs). In this method, heat pipe is immersed inside the phase change material, where heat is effectively accumulated and stored for an extended period of time due to thermal insulation of evacuated tubes. The proposed solar collector utilizes two distinct phase change materials (dual-PCM), namely Tritriacontane paraffin and Erythritol, with melting temperature 72°C and 118°C respectively. The integration of Silicone oil for uniform melting of the PCMs, utilizes the convective heat transfer inside the evacuated tubes, as this liquid polymerized material is well known for its temperature-stability and an excellent heat transfer medium. The operation of solar water heater with the proposed solar collector is investigated during both normal and stagnation (on-demand) operation. The feasibility of this technology is tested via small scale and large scale commercial solar water heaters. Beyond the improved functionality for solar water heater systems, the results from this study show show efficiency improvement of 26% for the normal operation and 66% for the stagnation mode compared with standard solar water heaters that lack phase change materials and silicone oil. The benefit of this method includes improved functionality by delayed release of heat, thus providing hot water during the hours of high demand or when solar intensity is insufficient such in a cloudy day and during night time.


Sign in / Sign up

Export Citation Format

Share Document