Control Strategies for Multistage Solar Collector Systems

1988 ◽  
Vol 110 (3) ◽  
pp. 230-232
Author(s):  
C. Saltiel

A comparative study of the yearly performance of multistage solar collector systems, (comprised of more than one collector type) with a single on/off flow control strategy for all the collectors and separate on/off controls for each collector stage, is performed. Detailed numerical simulations under a range of climatic conditions showed that there is little advantage in using individual collector controls over a single on/off control strategy when the systems operate at low collector thresholds, but differences in system performance can be quite significant at high threshold values. In addition, the choice of the single control strategy (i.e., which collector the strategy is based on) at low thresholds is not critical in terms of system performance.

Author(s):  
Jun Liu ◽  
Hongrui Liu ◽  
Guang Liu ◽  
Qiang Du ◽  
Pei Wang ◽  
...  

After being studied for years, aggressive intermediate turbine duct is being attempted to be applied in turbine design to further improve the engine-performance. With such design, the shaft could be shortened effectively. However, under the influence of the more distorted coming-flow and stronger pressure-gradient in a real engine, the flow field would be more complicated definitely. Besides that, the upstream-rotor tip-leakage flow is a key loss-source by inducing separation. Flow-control strategies are necessary in this situation. In this paper, the flow field in an aggressive duct has been analyzed to declare the source of separation primarily. Then wide-chord blade design concept has been adopted as a control strategy firstly to realize the purpose of improving the areo-performance. After being verified, numerical method has been used in this study. Under the same aero-condition, the prototype and the modified turbine are analyzed. With this novel flow-control strategy, separation has been improved, even diminished. However, the flow structures within the blade passage are altered correspondingly. An instrumental conclusion is that the pressure loss could be decreased successfully by designing the wide-chord blade specially.


Author(s):  
Veer N. Vatsa ◽  
Benjamin M. Duda ◽  
John C. Lin ◽  
LaTunia G. Pack Melton ◽  
David P. Lockard ◽  
...  

1981 ◽  
Vol 103 (1) ◽  
pp. 47-51
Author(s):  
R. L. T. Wolfson ◽  
H. S. Harvey

Two identical solar collector systems were operated side by side for a 67 day period. Data acquisition and control of both systems were accomplished by a minicomputer. One system’s control strategy kept its two storage tanks at the same temperature, simulating a single tank. The other system employed a dual temperature strategy designed to allow greater flexibility in adjusting to varying isolation. The dual temperature strategy showed a modest 4 percent gain in energy delivered to a load.


2012 ◽  
Vol 614-615 ◽  
pp. 1489-1497 ◽  
Author(s):  
Ding Guo Liu ◽  
Zhi Kang Shuai ◽  
An Luo ◽  
Chun Ming Tu ◽  
Ying Cheng

In this paper, a comparative study on control strategies of parallel hybrid active power filters (PHAPF) is presented. A universal electric model of three different PHAPF is proposed. The principle for the harmonic current elimination of PHAPF when different control strategies are adopted is analyzed. As the performance of the PHAPF will be influenced by the fluctuation of the power system parameters, a comparative study of the influences when different control strategies are adopted is carried out. The conclusions can help in the choice of an optimal basic control strategy, and guarantee the secure operation of the PHAPF system. Experiments have been carried out to verify the validity of the theoretical analysis in this paper.


Author(s):  
Carla Benea ◽  
Laura Rendon ◽  
Jesse Papenburg ◽  
Charles Frenette ◽  
Ahmed Imacoudene ◽  
...  

Abstract Objective: Evidence-based infection control strategies are needed for healthcare workers (HCWs) following high-risk exposure to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). In this study, we evaluated the negative predictive value (NPV) of a home-based 7-day infection control strategy. Methods: HCWs advised by their infection control or occupational health officer to self-isolate due to a high-risk SARS-CoV-2 exposure were enrolled between May and October 2020. The strategy consisted of symptom-triggered nasopharyngeal SARS-CoV-2 RNA testing from day 0 to day 7 after exposure and standardized home-based nasopharyngeal swab and saliva testing on day 7. The NPV of this strategy was calculated for (1) clinical coronavirus disease 2019 (COVID-19) diagnosis from day 8–14 after exposure, and for (2) asymptomatic SARS-CoV-2 detected by standardized nasopharyngeal swab and saliva specimens collected at days 9, 10, and 14 after exposure. Interim results are reported in the context of a second wave threatening this essential workforce. Results: Among 30 HCWs enrolled, the mean age was 31 years (SD, ±9), and 24 (80%) were female. Moreover, 3 were diagnosed with COVID-19 by day 14 after exposure (secondary attack rate, 10.0%), and all cases were detected using the 7-day infection control strategy: the NPV for subsequent clinical COVID-19 or asymptomatic SARS-CoV-2 detection by day 14 was 100.0% (95% CI, 93.1%–100.0%). Conclusions: Among HCWs with high-risk exposure to SARS-CoV-2, a home-based 7-day infection control strategy may have a high NPV for subsequent COVID-19 and asymptomatic SARS-CoV-2 detection. Ongoing data collection and data sharing are needed to improve the precision of the estimated NPV, and here we report interim results to inform infection control strategies in light of a second wave threatening this essential workforce.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Sebastian Aniţa ◽  
Vincenzo Capasso ◽  
Simone Scacchi

AbstractIn a recent paper by one of the authors and collaborators, motivated by the Olive Quick Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since 2013, a simple epidemiological model describing this epidemic was presented. Beside the bacterium Xylella fastidiosa, the main players considered in the model are its insect vectors, Philaenus spumarius, and the host plants (olive trees and weeds) of the insects and of the bacterium. The model was based on a system of ordinary differential equations, the analysis of which provided interesting results about possible equilibria of the epidemic system and guidelines for its numerical simulations. Although the model presented there was mathematically rather simplified, its analysis has highlighted threshold parameters that could be the target of control strategies within an integrated pest management framework, not requiring the removal of the productive resource represented by the olive trees. Indeed, numerical simulations support the outcomes of the mathematical analysis, according to which the removal of a suitable amount of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surrounding areas resulted in the most efficient strategy to control the spread of the OQDS. In addition, as expected, the adoption of more resistant olive tree cultivars has been shown to be a good strategy, though less cost-effective, in controlling the pathogen. In this paper for a more realistic description and a clearer interpretation of the proposed control measures, a spatial structure of the epidemic system has been included, but, in order to keep mathematical technicalities to a minimum, only two players have been described in a dynamical way, trees and insects, while the weed biomass is taken to be a given quantity. The control measures have been introduced only on a subregion of the whole habitat, in order to contain costs of intervention. We show that such a practice can lead to the eradication of an epidemic outbreak. Numerical simulations confirm both the results of the previous paper and the theoretical results of the model with a spatial structure, though subject to regional control only.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


Sign in / Sign up

Export Citation Format

Share Document