Prediction of evaporation heat transfer coefficient and pressure drop of refrigerant mixtures in horizontal tubes

1993 ◽  
Vol 16 (3) ◽  
pp. 201-209 ◽  
Author(s):  
D Jung ◽  
R Radermacher
Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


Author(s):  
Yi-Yie Yan ◽  
Tsing-Fa Lin ◽  
Bing-Chwen Yang

The characteristics of evaporation heat transfer and pressure drop for refrigerant R134a flowing in a plate heat exchanger were investigated experimentally in this study. Two vertical counter flow channels were formed in the exchanger by three plates of commercialized geometry with a corrugated sine shape of a chevron angle of 60°. Upflow boiling of refrigerant R134a in one channel receives heat from the hot downflow of water in the other channel. The effects of the heat flux, mass flux, quality and pressure of R134a on the evaporation heat transfer and pressure drop were explored. The preliminary measured data for the water to water single phase convection showed that the heat transfer coefficient in the plate heat exchanger is about 9 times of that in a circular pipe at the same Reynolds number. Even at a very low Reynolds number, the present flow visualization in a plate heat exchanger with the transparent outer plate showed that the flow in the plate heat exchanger remains turbulent. Data for the pressure drop were also examined in detail. It is found that the evaporation heat transfer coefficient of R134a in the plates is quite different from that in circular pipe, particularly in the convective evaporation dominated regime at high vapor quality. Relatively intense boiling on the corrugated surface was seen from the flow visualization. More specifically, the present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux the pressure drop is higher for the entire range of the vapor quality but the heat transfer is only better at high quality. Raising the imposed wall heat flux was found to slightly improve the heat transfer. While at a higher system pressure the heat transfer and pressure drop are both slightly lower.


Author(s):  
Wei Li ◽  
Chuancai Zhang ◽  
Zhichuan Sun ◽  
Zhichun Liu ◽  
Lianxiang Ma ◽  
...  

Experimental investigation was performed to measure the evaporation heat transfer coefficients of R410A inside three three-dimensional enhanced tubes (1EHT-1, 1EHT-2 and 4LB). The inner and outer enhanced surface of the 4LB tube is composed by arrays of grooves and square pits, while 1EHT-1 tube and 1EHT-2 tube consist of longitudinal ripples and dimples of different depths. All these tubes have an inner diameter of 8.32 mm and an outer diameter of 9.52 mm. Experiment operational conditions are conducted as follows: the saturation temperature is 279 K, the vapor quality ranges from 0.2 to 0.8, and the mass flux varies from 160 kg/(m2·s) to 380 kg/(m2·s). With the mass flux increasing, the heat transfer coefficient increases accordingly. The heat transfer coefficient of 1EHT-2 is the highest of all three tubes, and that of 1EHT-1 is the lowest. The heat transfer coefficient of 4LB ranks between the 1EHT-1 and 1EHT-2 tube. The reason is that the heat transfer areas of the 1EHT-2 and 4LB tube are larger than that of 1EHT-1 and interfacial turbulence is enhanced in 1EHT-2.


1999 ◽  
Vol 121 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Y.-Y. Yan ◽  
T.-F. Lin

The evaporation heat transfer coefficient and pressure drop for refrigerant R-134a flowing in a plate heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated sine shape of a chevron angle of 60 deg. Upflow boiling of refrigerant R-134a in one channel receives heat from the hot downflow of water in the other channel. The effects of the mean vapor quality, mass flux, heat flux, and pressure of R-134a on the evaporation heat transfer and pressure drop were explored. The quality change of R-134a between the inlet and outlet of the refrigerant channel ranges from 0.09 to 0.18. Even at a very low Reynolds number, the present flow visualization of evaporation in a plate heat exchanger with the transparent outer plate showed that the flow in the plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient of R-134a in the plates is much higher than that in circular pipes and shows a very different variation with the vapor quality from that in circular pipes, particularly in the convective evaporation dominated regime at high vapor quality. Relatively intense evaporation on the corrugated surface was seen from the flow visualization. Moreover, the present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux the pressure drop is higher for the entire range of the vapor quality but the evaporation heat transfer is clearly better only at the high quality. Raising the imposed wall heat flux was found to slightly improve the heat transfer, while at a higher refrigerant pressure, both the heat transfer and pressure drop are slightly lower. Based on the present data, empirical correlations for the evaporation heat transfer coefficient and friction factor were proposed.


Sign in / Sign up

Export Citation Format

Share Document