Experimental study of falling film evaporation heat transfer coefficient on horizontal tube

2012 ◽  
Vol 50 (1-3) ◽  
pp. 310-316 ◽  
Author(s):  
Xingsen Mu ◽  
Shengqiang Shen ◽  
Yong Yang ◽  
Xiaohua Liu
Author(s):  
Xingsen Mu ◽  
Yong Yang ◽  
Shengqiang Shen ◽  
Gangtao Liang ◽  
Luyuan Gong

The horizontal-tube falling film evaporation is a widely adopted technique in multiple-effect distillation (MED) desalination plant due to the higher heat transfer coefficient under quite small temperature differences. In the present study, an experimental platform for horizontal-tube falling film evaporation was set up to measure its heat transfer characteristics. Results indicate that heat transfer coefficient (h) for both fresh water and seawater are almost independent with heat flux. The h increases firstly and then decreases with growth of Re. Along the tube circumference, the h increases after decreasing. In addition, the distribution of h for fresh water and seawater at the different evaporation temperatures and Reynolds number (Re) are also provided.


Author(s):  
Junichi Ohara ◽  
Shigeru Koyama

The characteristics of heat transfer and flow patterns are investigated experimentally for the vertical falling film evaporation of pure refrigerant HCFC123 in a rectangular minichannels consisting of offset strip fins. The refrigerant liquid is uniformly supplied to the channel through a distributor. The liquid flowing down vertically is heated electrically from the rear wall of the channel and evaporated. To observe the flow patterns during the evaporation process directly, a transparent vinyl chloride resin plate is placed as the front wall. The experimental parameters are as follows: the mass velocity G = 28∼70 kg/(m2s), the heat flux q = 20∼50 kW/m2 and the pressure P ≈ 100 kPa. It is clarified that the heat transfer coefficient α depends on G and q in the region of vapor quality x ≥ 0.3 while there is little influence of G and q in the region x ≤ 0.3. From the direct observation using a high speed video camera and a digital still camera, flow patterns are classified into five types. Then the empirical correlation equations for evaporation heat transfer coefficient on a vertical falling film plate fin evaporator with minichannels are proposed. From the physical model to evaluate the heat transfer coefficient of the minichannel surface with fins, the characteristics of fin efficiency is clarified that the average value of fin efficiency is about 0.6 and the distributive characteristics of fin efficiency is roughly inverse of heat transfer coefficient characteristics.


2012 ◽  
Vol 28 (2) ◽  
pp. 319-327 ◽  
Author(s):  
L.-H. Chien ◽  
R.-H. Chen

AbstractThis study investigates evaporation heat transfer performance of refrigerant R-134a falling film on three horizontal copper tubes in a vertical column. Experiments were performed at saturation temperatures of 10 and 26.7°C. The liquid flows through a liquid feeder with a row of circular holes at a rate of 0.0075 ∼ 0.0363kg/ms, while heat fluxes varied from 4.5 to 48.5kW/m2. A smooth tube, a fin tube of 0.4mm fin height, 60FPI (Fins Per Inch), and a new boiling enhanced tube (mesh tube) were tested. The test results show that heat transfer coefficient of the smooth tube increases with increasing heat flux and fluid temperature, and increases slightly with increasing flow rate before dry-out occurs. At low flow rates (less than 0.015kg/ms) or when Ref (≤ 255), the fin tube is in thin film evaporation mode and results in a large heat transfer coefficient. At high flow rates (0.0225, 0.03, and 0.0375kg/ms) the falling film evaporation curves are similar to those in pool boiling. For all tubes, the fluid temperature and the flow rate have only minor influences on heat transfer coefficient before dry-out occurs. The 60 FPI tube and the mesh tube enhance the falling film evaporation heat transfer coefficient 6.3 ∼ 8.29 fold and 1.9 ∼ 5.0 fold, respectively, as compared with the smooth tube. A new correlation of falling film evaporation, accounting for contributions of nucleate boiling and spray convection, is proposed. It predicts h-values of the falling film evaporation data of the smooth surface within ±30%.


Author(s):  
Lei Wang ◽  
Weiyu Tang ◽  
Limin Zhao ◽  
Wei Li

Abstract An experimental investigation was conducted on falling film evaporation along two porous tubes, which were sintered by stainless-steel powder with a diameter of 0.45 and 1 um, respectively. The test section is a 2 m long sintered tube with an outer diameter of 25 mm and a wall thickness of 2 mm. During the experiment, the pressure inside the tube was maintained at 1 atm, the inlet temperature was 373 K, and mass flux ranged from 0.51 to 1.36 kg/ (m s). Conditions of the steam outside the pipe, which was the heat source, were fixed, while the fouling tests were carried out at a constant mass flow of 0.74 kg/ (m s) using high-concentration brine as work fluid. The overall heat transfer coefficient under different working conditions was tested and compared with the stainless steel smooth tube of the same dimensions. The heat transfer coefficient of the two porous stainless tubes are about 35% and 20% lower than that of the smooth one, showing an inferior effect because the steam in the pores of the pipe wall during the infiltration process will reduce the heat conductivity. The heat transfer coefficient of the smooth tube deteriorated severely due to the deposition of calcium carbonate, which had little effect on the sintered tubes. Besides, the fouling weight of porous tubes is 2.01 g and 0 g compared with 5.52 g of the smooth tube.


2005 ◽  
Author(s):  
Liang-Han Chien ◽  
Hung-Ta Lin

This manuscript discusses the effect of inclination angle and surface geometries on the falling film evaporation performance. Falling film evaporation experiments were conducted on a smooth plate and finned plates using refrigerant R-134a at 18 °C system temperature. The plate was inclined with angles between 10° and 40°, and the heat fluxes are between 36 and 73.5kW/m2. The local heat transfer coefficients are measured, and the falling film flow distribution is observed through a sight glass. The test results showed that the falling film evaporation heat transfer coefficient increases as the inclination angle increases or the heat flux increases. The finned surface yields better falling film evaporation heat transfer performance than the smooth surface. The ratio of the heat transfer coefficient of the finned surface versus the plain surface is between 2.5 and 12.4 folds. This ratio increases as the inclination angle increases. The visualization observation showed that bubble nucleation is more pronounced on the finned surface than the plain surface. The effect of boiling on falling film evaporation is discussed.


Author(s):  
Junichi Ohara ◽  
Shigeru Koyama

The characteristics of heat transfer are investigated experimentally for the vertical falling film evaporation of binary refrigerant mixture HFC134a/HCFC123 in a rectangular minichannels consisting of offset strip fins. The refrigerant liquid is uniformly supplied to the channel through a distributor. The liquid flowing down vertically is heated electrically from the rear wall of the channel and evaporated. To observe the flow patterns during the evaporation process directly, the small circular window is set at the center of every section on the front wall. The experimental parameters are as follows: the mass velocity G = 28∼70 kg/(m2s), the heat flux q = 30∼50 kW/m2 and the pressure P ≈ 100∼260 kPa. In the case of large mass velocity G ≥ 55 kg/(m2s), the value of heat transfer coefficient becomes lower with increase of mass fraction of low-boiling component HFC134a wb in the region of x ≥ 0.3. The main reason for this inclination of α is considered that shearing force acts on the liquid-vapor interface becomes smaller because of vapor velocity suppressed by higher pressure in the test evaporator in the case of larger mass fraction of low-boiling component. Additionally, mass diffusion resistances formed on each side of vapor and liquid phase along the liquid-vapor interface are considered as a possible cause of reduction in the heat transfer coefficient α with increase of mass fraction wb. In the region of x ≥ 0.8, α descend rapidly despite the difference in the value of wb. It can be attributed to dry-out state of heat transfer area. Heat transfer coefficient derived from experiments is compared with that calculated from empirical correlation equation for heat transfer coefficient of pure refrigerant in a vertical falling film plate-fin evaporator.


Sign in / Sign up

Export Citation Format

Share Document