Time domain response of a one-dimensional soil-structure interacting model via complex analysis

1996 ◽  
Vol 18 (6) ◽  
pp. 425-436 ◽  
Author(s):  
G. Oliveto ◽  
A. Santini
Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


2014 ◽  
Vol 105 (4) ◽  
pp. 041911 ◽  
Author(s):  
R. van Leeuwen ◽  
A. Castellanos-Gomez ◽  
G. A. Steele ◽  
H. S. J. van der Zant ◽  
W. J. Venstra

Author(s):  
Gonçalo Neves Carneiro ◽  
Pedro Ribeiro

The vibrations of beams with a breathing crack are investigated taking into account geometrical non-linear effects. The crack is modeled via a function that reduces the stiffness, as proposed by Christides and Barr (One-dimensional theory of cracked Bernoulli–Euler beams. Int J Mech Sci 1984). The bilinear behavior due to the crack closing and opening is considered. The equations of motion are obtained via a p-version finite element method, with shape functions recently proposed, which are adequate for problems with abrupt localised variations. To analyse the dynamics of cracked beams, the equations of motion are solved in the time domain, via Newmark's method, and the ensuing displacements, velocities and accelerations are examined. For that purpose, time histories, projections of trajectories on phase planes, and Fourier spectra are obtained. It is verified that the breathing crack introduce asymmetries in the response, and that velocities and accelerations can be more affected than displacements by the breathing crack.


Sign in / Sign up

Export Citation Format

Share Document