The near wake structure of a square cylinder

1989 ◽  
Vol 10 (4) ◽  
pp. 339-348 ◽  
Author(s):  
M.A.Z. Hasan
2014 ◽  
Vol 553 ◽  
pp. 267-272
Author(s):  
Iain Robertson ◽  
Adrien Becot ◽  
Adrian Gaylard ◽  
Ben Thornber

This paper focuses on the effect of base roughness added to the rear of an automotive reference model, the Windsor model. This roughness addition was found to reduce both the drag and the lift of the model. RANS CFD simulations presented here replicate the experimentally observed drag reduction and enable a detailed examination of the mechanisms behind this effect. Investigations into the wake structure of the configurations with base roughness and the baseline case without base roughness showed the main changes to the wake to include a reduction in the overall size of the wake with base roughness present. Furthermore a reduction in the near wall velocities at the rear of the model caused stretching of the upper and lower vortices, a more turbulent near wake and pressure recovery over much of the rear face. This leads to reduce levels of pressure drag on the model.


Author(s):  
Hariprasad Chakkalaparambil Many ◽  
Vishnu Chandar Srinivasan ◽  
Ajith Kumar Raghavan

In this paper, flow structures around a corner modified square cylinder (side dimension, Bo) are presented and discussed. Cylinders with various corner arcs (circular) were considered (arc radius ‘r’). For various Corner Ratios (CR = r/Bo), values ranging from 0 to 0.5, flow visualization experiments were conducted in a water channel and the results are reported at Re = 2100 (based on Bo). Results presented are for two cases (a) stationary cylinders reporting the values of CD (coefficient of drag), St (Strouhal no.), and D (vortex size) and (b) oscillating cylinders at fe/fs = 1 (fe is the cylinder excitation frequency and fs is the vortex shedding frequency) and a/Bo = 0.8 (a is the cylinder oscillation amplitude). The work is aimed to explore the most effective configuration for drag reduction. Cylinder with corner ratio of 0.2 is proved to be the most effective one among the cases considered in this study with 19.3% drag reduction. As a major highlight, in contrast to the results of the previous studies, current study do not reveal a monotonous decrease of drag with increasing corner modification. Instead, it is shown here that, there is a specific value of CR ratio where the drag is the minimum most. A peculiar type of vortex structure was observed in the cases of stationary cylinders with CR > 0.2, contributing to the increase in drag. In the case of oscillating cylinders, description of one complete cycle for all CR ratios at various time instances are presented. The near-wake structures were observed to be dependent on the CR ratio. Counter intuitively, cylinder oscillation does not bring major difference in vortex size compared to the stationary case.


2008 ◽  
Vol 336 (4) ◽  
pp. 363-369 ◽  
Author(s):  
Christophe Brun ◽  
Thomas Goossens

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
The Hung Tran

The effect of a boattail angle on the structure of the wake of an axisymmetric model was investigated at low-speed condition. Four conical boattail models with angles of 0° (blunt-based body), 10°, 16°, and 22° were selected for this study. The Reynolds number based on the diameter of the model was around 1.97×104. Particle image velocimetry (PIV) was used to measure the velocity of the wake flow. The time-averaged flow characteristics including the length of recirculation of the afterbody, turbulent intensity, and Reynolds shear stress were analyzed and compared among those boattail models. The experimental results showed that the length of recirculation decreases with increasing boattail angle to 16°. At a boattail angle above 16°, the flow was fully separated near the shoulder and near-wake structure was highly changed. The turbulent intensity at a boattail angle of 22° showed a similar level to that in the case of the blunt-based body. Flow behavior on boattail surface should be accounted as an important parameter affecting the wake width and drag of the model. Power spectral density and proper orthogonal decomposition (POD) analyses showed that a Strouhal number of StD=0.2 dominated for the boattail model up to 16°. The fully separated flow was dominated by a Strouhal number of StD=0.03−0.06, which was firstly presented in this study.


Solar Energy ◽  
1995 ◽  
Vol 54 (6) ◽  
pp. 413-428 ◽  
Author(s):  
C.G. Helmis ◽  
K.H. Papadopoulos ◽  
D.N. Asimakopoulos ◽  
P.G. Papageorgas ◽  
A.T. Soilemes

Sign in / Sign up

Export Citation Format

Share Document