The use of the point load test in predicting the compressive strength of rock materials. Technical note

2021 ◽  
Author(s):  
Asad Kamran ◽  
Liaqat Ali ◽  
Waqas Ahmed ◽  
Sobia Zoreen ◽  
Shah Jehan

Abstract This study investigated the aggregate suitability and geo-chemical characteristics of limestone (LS) for construction industries. The results of aggregate parameters for different applications revealed that specific gravity (SG = 2.6), water absorption (WA = 0.47%), bulk density (BD = 1.58 g/cm3), flakiness index (FI = 16.8%), elongation index (EI = 16.39%), soundness (S = 1.6%), aggregate impact value (AIV = 14%), Los Angles Abrasion value (LAAV = 23.51%), clay lumps (CL = 0.35%), uniaxial compressive strength (UCS = 86.7 MPa), point load test (PLT = 5.18 MPa), ultrasonic pulse velocity (UPV = 5290 m/s) and Schmidt hammer rebound test (SHRT = 49 N) are in accordance with ASTM, ISRM and BSI. Petrographically, the LS is dominantly composed of ooids, peloids, bioclasts and calcite (CaCO3) with trace concentration of the dolomite. Geochemical results (n = 18) indicated that the LS is dominantly made up of calcite (95.81%); while on average it is composed of 52.08 wt.% CaO, 1.13 wt. % SiO2, 0.66 wt. %, MgO, 0.80 wt. % Al2O3, 0.76 wt. % Fe2O3 and LOI were recorded as 42.13 wt. %. Whereas, P2O5, TiO2, MnO, K2O and Na2O are found in trace amount. Regression analysis demonstrates that the empirical correlation equation for estimating uniaxial compressive strength with ultrasonic pulse velocity is more reliable than Schmidt hammer rebound test and point load test. The findings of this study strongly suggest LS of the area has a great potential as a raw material in construction industries.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Fengyu Ren ◽  
Huan Liu ◽  
Rongxing He ◽  
Guanghui Li ◽  
Yang Liu

The point load test (PLT) is intended as an index test for rock strength classification or estimations of other strength parameters because it is economical and simple to conduct in the laboratory and in field tests. In the literature, calculation procedures for cylinder cores, blocks, or irregular lumps can be found, but no study has researched such procedures for half-cylinder cores. This paper presents the numerical model and laboratory tests for half-cylinder and cylinder specimens. The results for half-cylinder and cylinder specimens are then presented, analysed, and discussed. A correlation of failure load between half-cylinder and cylinder specimens is established with a suitable size suggestion and correction factor. It is found that the failure load becomes stable when half-cylinder specimens have a length/diameter ratio higher than 0.9. In addition, the results show that the point load strength index (PLSI) of half-cylinder cores can be calculated using the calculation procedures for diametral testing on cylinder cores, and it is necessary to satisfy the conditions that the length/diameter ratio be higher than 0.9 and the failure load be multiplied by 0.8.


Sign in / Sign up

Export Citation Format

Share Document